Sections

Cancer and Molecular Therapies 8
Cardiovascular Research and Diseases 42
Dental Health and Medicine 54
Diabetes, Metabolic and Endocrine Diseases 63
Genomics & Personalized Medicine 76
Hearing, Language & Speech Sciences and Disorders 97
Infectious Diseases 117
Inflammatory and Autoimmune Diseases 136
Medical Education and Ethics 147
Nervous System and Brain Disorders 155
Nursing, Occupational and Physical Therapy 203
Public Health 243
Reproduction, Development and Evolution 272
Stem Cells, Regenerative Medicine and Aging 289

Cover images (from bottom left, clockwise):

Image 1: Human embryonic stem cell derived cardiomyocytes stained with fluorescent antibodies. The cardiac marker alpha-actinin (green), calcium channel modulator, Ahnak1 (red) – Shimrit Oz, Nathan Dascal.

Image 2: Islet of Langerhans containing insulin-producing beta-cells (green) and glucagon-producing alpha-cells (red) – Daria Baer, Limor Landsman.

Image 4: Stereocilia of a sensory outer hair cell from a mouse inner ear – Shaked Shivatzki, Karen Avraham.

Image 5: Electron scanning micrograph of middle ear ossicles from a mouse ear stained with pseudo colors – Shaked Shivatski, Karen Avraham.

Image 6: Resistin-like molecule alpha (red), eosinophil major basic protein (green) and DAPI (blue) staining of asthmatic mice – Danielle Karo-Atar, Ariel Munitz.

© All rights reserved
Editor: Prof. Karen Avraham
Graphic design: Michal Semo Kovetz, TAU Graphic Design Studio
May 2020
The Sackler Faculty of Medicine

The Sackler Faculty of Medicine is Israel's largest medical research and training complex. The Sackler Faculty of Medicine of Tel Aviv University (TAU) was founded in 1964 following the generous contributions of renowned U.S. doctors and philanthropists Raymond, and the late Mortimer and Arthur Sackler. Research at the Sackler Faculty of Medicine is multidisciplinary, as scientists and clinicians combine efforts in basic and translational research. Research is conducted in the laboratories on the TAU campus, and in the clinical facilities affiliated to the Faculty. The Faculty of Medicine includes the Sackler School of Medicine, the School of Health Professions, the School of Public Health, and the School of Dental Medicine. Education takes place in all these schools and in the Graduate School of Medicine, School of Continuing Medical Education, the New York State American Program and the B.Sc. Program in Medical Life Sciences. This network of preclinical and clinical teams helps realize the ultimate goals of the research: the basic understanding of human pathophysiology and the prevention, diagnosis and treatment of disease. The research of Preclinical faculty members from the Sackler School of Medicine are featured in this research brochure.

The Faculty of Medicine engages in joint teaching and research programs with nearly every faculty at TAU, including the Wise Faculty of Life Sciences, the Sagol School of Neuroscience, the Edmond J. Safra Bioinformatics Center, the TAU Center for Nanoscience and Nanotechnology, and the Edmond J. Safra Center for Ethics, and multi-nationally with schools, hospitals and research centers throughout the world. The Sackler faculty is known for research in the following areas: cancer biology, stem cells, diabetes, neurodegenerative diseases, infectious diseases and genetic diseases, including but not limited to Alzheimer's disease, Parkinson's disease and HIV/AIDS. Physicians in 181 Sacker affiliated departments and institutes in 17 hospitals hold academic appointments at TAU. The Gitter-Smolarz Life Sciences and Medicine Library serves students and staff and is the center of a consortium of 15 hospital libraries.

The student body is made up of 750 Israeli students enrolled in the 6-year M.D. degree program, 300 American and Canadian students enrolled in a 4-year M.D. program chartered by the State of New York and accredited by the State of Israel, and a 4-year program for Israeli students for the M.D. degree, with 260 students. Approximately 200 students study dental medicine in a six-year program where they are awarded the D.M.D. degree and another 2,000 students are enrolled in the health professions programs where they will earn degrees in Communications Disorders, Nursing, Physical Therapy and Occupational Therapy. Sackler’s Graduate School for Advanced Studies trains approximately 800 masters and doctoral level students in the biomedical disciplines, with a special emphasis on a multidisciplinary approach and application of fundamental knowledge to important biomedical problems.

The Sackler Faculty of Medicine is led by the Dean, Professor Ehud Grossman; Vice Deans Prof. Karen Avraham, Prof. Iris Barshack, Prof. Moshe Phillip, Prof. Anat Lowenstein, Prof. Ami Fishman, Prof. Arnon Wiznitzer and Assistant to the Dean, Ms. Michal Gilboa.
Table of Contents

Cancer and Molecular Therapies 8
 - Dr. Uri Ben-David 9
 - Dr. Yaron Carmi, Ph.D. 12
 - Prof. Neta Erez, Ph.D. 14
 - Prof. Zvi Fishelson, Ph.D. 17
 - Prof. Tamar Geiger, Ph.D. 19
 - Prof. Shai Izraeli, M.D. 23
 - Prof. Yona Keisari, Ph.D. 27
 - Prof. Rafi Korenstein, Ph.D. 29
 - Prof. Rina Rosin-Arbesfeld, Ph.D. 31
 - Prof. Ronit Satchi-Fainaro, Ph.D. 33
 - Prof. Yosef Shiloh, Ph.D. 38
 - Prof. Ilan Tsarfaty, Ph.D. 40

Cardiovascular Research and Diseases 42
 - Prof. Bernard Attali, Ph.D. 43
 - Prof. Nathan Dascal, Ph.D. 45
 - Dr. Michal Katz-Leurer, Ph.D. 47
 - Prof. Daniel Khananshvili, Ph.D. 49
 - Prof. Jonathan Leor, M.D. 51

Dental Health and Medicine 54
 - Dr. Lih Adler-Abramovich, Ph.D. 55
 - Prof. Tamar Brosh, Ph.D. 58
 - Prof. Ilana Eli, D.M.D. 60
 - Dr. Rachel Sarig, Ph.D., D.M.D. 61

Diabetes, Metabolic and Endocrine Diseases 63
 - Prof. Shimon Efrat, Ph.D. 64
 - Prof. Koret Hirschberg, Ph.D. 65
 - Dr. Limor Landsman, Ph.D. 67
 - Prof. Drorit Neumann, Ph.D. 69
 - Prof. Haim Werner, Ph.D. 71
 - Prof. Efrat Wertheimer, MD., PhD. 74

Genomics & Personalized Medicine 76
 - Prof. Gil Ast, Ph.D. 77
 - Prof. Karen B. Avraham, Ph.D. 79
 - Dr. Ran Elkon, Ph.D. 82
 - Prof. David Gurwitz, Ph.D. 84
 - Prof. Carmit Levy, Ph.D. 87
<table>
<thead>
<tr>
<th>Department</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing, Language & Speech Sciences and Disorders</td>
<td>97</td>
</tr>
<tr>
<td>Dr. Noam Amir, D.Sc.</td>
<td>98</td>
</tr>
<tr>
<td>Prof. Ofer Amir, Ph.D.</td>
<td>100</td>
</tr>
<tr>
<td>Dr. Daphne Ari-Even Roth, Ph.D.</td>
<td>102</td>
</tr>
<tr>
<td>Dr. Katy Borodkin, Ph.D.</td>
<td>104</td>
</tr>
<tr>
<td>Prof. Yael Henkin, Ph.D.</td>
<td>106</td>
</tr>
<tr>
<td>Prof. Minka Hildesheimer, Ph.D.</td>
<td>108</td>
</tr>
<tr>
<td>Prof. Liat Kishon-Rabin, Ph.D.</td>
<td>110</td>
</tr>
<tr>
<td>Prof. Tova Most, Ph.D.</td>
<td>113</td>
</tr>
<tr>
<td>Prof. Chava Muchnik, Ph.D.</td>
<td>115</td>
</tr>
<tr>
<td>Prof. Dorit Ravid, Ph.D.</td>
<td>116</td>
</tr>
<tr>
<td>Infectious Diseases</td>
<td>117</td>
</tr>
<tr>
<td>Prof. Elhanan Borenstein, Ph.D.</td>
<td>118</td>
</tr>
<tr>
<td>Dr. Natalia T. Freund, Ph.D.</td>
<td>121</td>
</tr>
<tr>
<td>Prof. Fuad Iraqi, Ph.D.</td>
<td>123</td>
</tr>
<tr>
<td>Dr. Oren Kobiler, M.D., Ph.D.</td>
<td>125</td>
</tr>
<tr>
<td>Prof. Nir Osherov, Ph.D.</td>
<td>126</td>
</tr>
<tr>
<td>Prof. Udi Qimron, Ph.D.</td>
<td>128</td>
</tr>
<tr>
<td>Dr. Dor Salomon, Ph.D.</td>
<td>130</td>
</tr>
<tr>
<td>Prof. Esther Segal, Ph.D.</td>
<td>132</td>
</tr>
<tr>
<td>Dr. Ella Sklan, Ph.D.</td>
<td>134</td>
</tr>
<tr>
<td>Inflammatory and Autoimmune Diseases</td>
<td>136</td>
</tr>
<tr>
<td>Dr. Maayan Gal, Ph.D.</td>
<td>137</td>
</tr>
<tr>
<td>Dr. Asaf Madi, Ph.D.</td>
<td>139</td>
</tr>
<tr>
<td>Prof. Ariel Munitz, Ph.D.</td>
<td>141</td>
</tr>
<tr>
<td>Prof. Mordechay (Motti) Gerlic, Ph.D.</td>
<td>143</td>
</tr>
<tr>
<td>Prof. Ronit Sagi-Eisenberg, Ph.D.</td>
<td>145</td>
</tr>
<tr>
<td>Medical Education and Ethics</td>
<td>147</td>
</tr>
<tr>
<td>Dr. Oren Asman, LL.D., Adv.</td>
<td>148</td>
</tr>
<tr>
<td>Prof. Yechiel Michael Barilan, M.D., M.A.</td>
<td>149</td>
</tr>
<tr>
<td>Dr. Ilana Dubovi, Ph.D.</td>
<td>151</td>
</tr>
<tr>
<td>Prof. Orit Karnieli-Miller, Ph.D.</td>
<td>153</td>
</tr>
<tr>
<td>Nervous System and Brain Disorders</td>
<td>155</td>
</tr>
<tr>
<td>Prof. Ruth Ashery-Padan, Ph.D.</td>
<td>156</td>
</tr>
<tr>
<td>Dr. Avraham Ashkenazi, Ph.D.</td>
<td>158</td>
</tr>
</tbody>
</table>
Prof. Hagit Eldar-Finkelman, Ph.D. 160
Dr. Jason Friedman, Ph.D. 161
Prof. Illana Gozes, Ph.D. 163
Dr. Yoni Haitin, Ph.D. 168
Prof. Talma Hendler, M.D., Ph.D. 170
Prof. Dario G. Liebermann, Ph.D. 174
Prof. Ilana Lotan, Ph.D. 176
Prof. Yuval Nir, Ph.D. 178
Prof. Daniel Offen, Ph.D. 180
Dr. Moshe Parnas, Ph.D. 183
Prof. Eran Perison, Ph.D. 185
Prof. Chaim G. (Chagi) Pick, Ph.D. 188
Prof. Moshe Rehavi, Ph.D. 191
Dr. Moran Rubinstein, Ph.D. 192
Prof. Naphtali Savion, Ph.D. 194
Prof. Inna Slutsky, Ph.D. 195
Prof. Arieh S. Solomon, M.D., Ph.D. 197
Dr. Eran Stark, M.D., Ph.D. 199
Dr. Ido Tavor, Ph.D. 201

Nursing, Occupational and Physical Therapy 203
Dr. Michal Avrech Bar, Ph.D., O.T. 204
Dr. Tami Bar-Shalita, Ph.D., O.T. 206
Prof. Sivia Barnoy, R.N., Ph.D. 208
Dr. Orit Bart, Ph.D., OTR 210
Prof. Ruth Defrin, Ph.D. 212
Dr. Michal Itzhaki, R.N., Ph.D. 215
Dr. Ilya Kagan, R.N., Ph.D. 217
Prof. Silvia Koton, Ph.D., M.Occ.H., R.N. 219
Yael Lahav, Ph.D. 221
Dr. Lena Lipskaya-Velikovsky, Ph.D., O.T. 223
Dr. Alon Kalron, Ph.D., P.T. 224
Dr. Youssef Masharawi, Ph.D., B.P.T. 228
Dr. Semyon Melnikov, R.N. Ph.D. 230
Dr. Sigal Portnoy, Ph.D. 232
Dr. Debbie Rand, Ph.D., O.T. 235
Prof. Navah Z. Ratzon, Ph.D., O.T. 237
Dr. Angela Ruban, Ph.D. 239
Dr. Miriam Theilla, Ph.D. 241
Public Health

Dr. Bruria Adini, Ph.D. 244
Prof. Daniel I. Cohen, Ph.D. 246
Prof. Jiska Cohen-Mansfield, Ph.D. 248
Dr. Yftach Gepner, Ph.D. 251
Prof. Yariv Gerber, Ph.D. 254
Prof. Uri Goldbourt, Ph.D. 256
Dr. Israel Halperin Ph.D. 258
Prof. Liat Lerner-Geva, M.D., Ph.D. 260
Prof. Khitam Muhsen, Ph.D. 263
Dr. Uri Obolski, Ph.D. 265
Prof. Chava Peretz Ph.D. 268
Prof. Laura (Leah) J. Rosen Ph.D. 270

Reproduction, Development and Evolution

Dr. Limor Broday, Ph.D. 273
Prof. Yankel Gabet, D.M.D., Ph.D. 274
Prof. Israel Hershkovitz, Ph.D. 277
Prof. Michael M. Kozlov, Ph.D. 280
Dr. Hila May, Ph.D. 282
Prof. Ruth Shalgi, Ph.D. 285
Prof. Ronen Zaidel Bar, Ph.D. 287

Stem Cells, Regenerative Medicine and Aging

Dr. Daniel Zvi Bar, Ph.D. 290
Prof. Dafna Benayahu, Ph.D. 291
Dr. Chen Luxenburg, Ph.D. 293
Dr. Michael Milyavsky, Ph.D. 295
The complement membrane attack complex modifies the cellular distribution of a mitochondrial chaperone – Niv Mazkereth, Zvi Fishelson
Cancer Genetics

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
Our lab studies cancer genetics, with three main research interests:

1) The main focus of the lab is on an under-studied trait of cancer, called aneuploidy – the presence of an abnormal number of chromosomes in cancer cells — and the potential of using this trait to target cancer cells and eliminate tumors. We combine experimental and computational approaches to uncover the basic biology underlying this hallmark of cancer, to track its origins and to uncover its cellular consequences. By doing so, we strive to expand our understanding of the genetic basis of cancer, and to make aneuploidy a therapeutic target for cancer treatment. While aneuploidy is common across most cancer types, research in the lab is mostly focused on epithelial solid tumors, and especially on breast cancer and colon cancer.

2) The study of the complex genetics of human cancer depends on cancer model systems. These models reflect the biology of actual human tumors only to a certain extent, and evolve in ways that pose both risks and opportunities for cancer research. The lab studies the genomic stability and evolution of cancer model systems, in order to optimize their application in biomedical research, with an emphasis on aneuploidy research.

3) Human stem cells share fundamental characteristics with human cancer cells, and thus make for a unique model system to study cancer genetics. The lab uses human stem cells as a tool for aneuploidy research and for the identification of cancer vulnerabilities.

(a) Aneuploidy patterns are determined by the cellular context, and can affect multiple facets of cancer biology. (b) Gene expression analyses can identify driver genes that underlie the recurrence of common aneuploidies. (c) Studying isogenic model systems can help uncover the cellular consequences of aneuploidy. (d) In vitro transformation assays are used to study the phenotypic effects of aneuploidy. (e) Microscopy analyses of mitoses can reveal how aneuploidy arises.
Publications

Reviews & Perspectives

Grants

- **2020** Israel Cancer Association (ICA), “Identifying cellular vulnerabilities induced by the most common chromosomal change in breast cancer”
- **2020** Cancer Biology Research Center (CBRC), “Identifying clinically-actionable vulnerabilities of del17p breast cancer cells”
- **2020** Eimert Research Fund on Solid Tumors, Tel Aviv University, “Studying PI3K pathway dependency in breast cancer cells with a deletion of chromosome arm 17p”
- **2019-2022** Azrieli Foundation, “Identifying and characterizing an aneuploidy-induced vulnerability to inhibition of KIF18A”
Dr. Yaron Carmi, Ph.D.
Department of Pathology
Sackler School of Medicine
Sackler Faculty of Medicine

Cellular and Molecular Mechanisms of Antigen-Restricted Tumor Immunity

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
The goal of our work is to provide a detailed understanding of the mechanisms, signals and molecular pathways that regulate discriminating self from non-self and give rise to tumor-specific cytotoxic T cell immunity. Our specific aims are to address the following: 1) What are the cellular and molecular elements that enable the immune system to recognize subtle antigenic variations from self to initiate a cytotoxic immune response? 2) How is the specificity of the induced immune response determined? In other words, what is the process by which the presentation of diverse antigens by DC is reduced to activation of specific effector T cells? Understanding the means by which DC and T cells communicate to initiate antigen-restricted tumor immunity and how these processes are regulated will provide a roadmap for designing novel, more potent cancer immunotherapies.

Publications

Patents
Engleman EG and Carmi Y. Methods and Compositions for Antibody and Antibody-Loaded Dendritic Cell Mediated Therapy. US2015012511

Engleman EG, Spitzer M. and Carmi Y. Methods and Compositions for Treating Individuals That Have Cancer and for Identifying Individuals Responsive to Immunotherapy. 62/447,959

Grants
2017-2019 Alon Award for Outstanding Young Scientists
2017-2020 Swiss Bridge Award: Elucidating the Mechanisms by Which Tumor-Binding Antibodies Enable T Cells Infiltration into the Tumor Microenvironment
2018-2022 Israel Science Foundation
Cancer Related Inflammation in Tumor Progression and Metastasis

Position
Associate Professor, Sackler Faculty of Medicine
Chair, Department of Pathology

Research
The main goal of our laboratory is to uncover stromal pathways that contribute to tumorigenesis and metastasis. In particular, we combine transgenic mouse models of cancer as well as clinical data to study the role of inflammation and cancer-associated fibroblasts in facilitating lung metastasis of breast cancer, and to uncover the role of neuroinflammation mediated by astrocytes in melanoma brain metastasis.

Extensive research has led to the understanding that tumors are more than just cancer cells: stromal cells in the tumor microenvironment play a crucial role in all stages of tumor initiation and progression, and cancer research is no longer focused only on the pathways inside tumor cells, but rather on tumors as multi-cellular organs.

The major cause of cancer mortality is metastasis to distant organs. Currently, metastatic cancers are incurable and available therapies can only prolong life to a limited extent. Therefore, uncovering the mechanisms that facilitate metastasis is an urgent and unmet clinical need. Nevertheless, changes in the metastatic microenvironment that enable the growth of disseminated tumor cells are poorly characterized, and are the major focus of our research.

Expanding our understanding of the early stages of metastatic growth is an essential prerequisite for the discovery of novel target molecules for the development of targeted therapeutics that may prevent, rather than try to cure, metastatic disease.

Publications

Sharon Y., Raz Y., Cohen N., Ben-Shmuel A., Schwartz H., Geiger T., and Erez N. Tumor-derived Osteopontin reprograms normal mammary fibroblasts to become

A, B: Cancer Associated Fibroblast (CAFs) accumulate around mammary tumors in tissue Sections from the MMTV-PyMT transgenic mouse model. Green-aSMA, Blue-DAPI, Red-FSP-1. C: Immunofluorescent staining showing activated fibroblasts in lung metastases in MMTV-PyMT mice. Blue- DAPI. Green –aSMA.

Reviews

Grants

European Research Council (ERC) Starting Grant. Uncovering the Role of Cancer Associated Fibroblasts in Facilitating Breast Cancer Metastasis

German Research Foundation (DFG). Characterizing the functional role of astrogliosis and neuroinflammation in melanoma brain metastasis.

Israel Cancer Research Foundation (ICRF). Project Grant, Uncovering the role of fibroblasts in facilitating breast cancer metastasis and therapy resistance via NLRP3 inflammasome signaling.

Israel Cancer Association (ICA), Uncovering the role of fibroblasts in facilitating breast cancer chemoresistance and metastasis via pro-inflammatory signaling.

Israel Science Foundation (ISF), Uncovering the role of the NLRP3 inflammasome in cancer-associated fibroblasts in facilitating breast cancer progression and metastasis.

Medical Research Council (MRC), UK, Mechanisms underlying inhibition of melanoma brain metastases upon immune checkpoint targeting
Molecular Analysis of Cancer Immunoresistance

Positions
The Roberts-Guthman Chair in Immunopharmacology
Professor Emeritus, Sackler Faculty of Medicine
Advisory Editor, Molecular Immunology
Associate Editor, Frontiers in Molecular Innate Immunity

Research
The long-term goal of our research is to develop a novel treatment for immune resistant cancers. Our research includes characterization of the mechanism of complement-dependent cytotoxicity and of the basis for elevated resistance of cancer cells to cell death, and design of novel reagents that sensitize cancer cells to cell death. Research methods used include analyses of cell growth and death and mitochondrial activity, western blotting, enzyme-linked immunosorbent assay (ELISA), immunoprecipitation, confocal fluorescence microscopy, Fluorescence-activated Cell Sorting (FACS), peptide analysis by mass spectrometry, electron microscopy, and analysis of cancer growth in animal models.

Publications

EM analysis demonstrates elevated formation of endosomes in K562 cells responding to an ongoing immune attack (left). Caveolin-1 (green) and complement C9 (red) co-localize in early and late endocytic vesicles of K562 cancer cells following complement attack on the cells (right 2 panels).
<table>
<thead>
<tr>
<th>Reviews</th>
<th>Grants</th>
</tr>
</thead>
</table>
Cancer Proteomics

Position
Associate Professor, Sackler Faculty of Medicine
Director, Interdepartmental Core Facility (Zabam)

Research
Our main interest is to understand the mechanisms of cancer progression and drug resistance. We use state-of-the-art mass spectrometry-based proteomics to obtain a system-wide view of the proteomes of cancer clinical samples of tumors and body fluids. Analysis of the changes in protein levels and the modifications that occur during tumor development is aimed to discover novel regulators of transformation. Identification of cancer biomarkers in body fluids such as serum and plasma, opens new possibilities to translate these results to diagnostic tests in clinical use. Among the many identified regulators, we focus on metabolic remodeling in cancer. Combining proteomic and metabolomic techniques, we investigate the involvement of metabolism in cancer transformation, regulation of cell proliferation and invasion. Combination of these technologies with biochemical and genetic methods shows the significance of these candidates to cancer development and may suggest novel markers and drug targets.

Publications

Persi E, Prandi D, Wolf YI, Pozniak Y, Barnabas GD, Levanon K, Barshack I, Barbieri C, Gasperini P, Beltran H, Faltas BM, Rubin MA, Geiger T, Koonin EV, Demichelis F, Horn D. Proteomic and

Reviews

Grants

European Research Council- ERC starting grant: Topoproteomic profiling of breast cancer heterogeneity

ISF (Israel Science Foundation): Proteogenomic analysis of tumor heterogeneity in breast cancer

Israel Innovation Authority (Nofar program): Discovery of biomarkers for early detection of ovarian cancer
Basic and Translational and Research of Childhood Malignancies and Leukemia

Positions
- Professor, Sackler Faculty of Medicine
- Chair, Varda and Boaz Dotan Research Center for Hematological Malignancies
- Dora and Gregorio Shapiro Chair of Hematological Malignancies
- Head, Division of Pediatric Hematology and Oncology, Schneider Children’s Medical Center

Research
We focus on patient-driven basic research into the pathogenesis of childhood leukemia and cancer. We harness advanced molecular and cellular biology technologies utilizing in-vitro and in-vivo models with the ultimate goal of improving the care of children with cancer.

Our research is divided into two major topics:
1. Basic, translational and clinical research of leukemia.
2. The role of cancer predisposing genes in the development of childhood cancer.

Cancer is the deadliest disease of children and leukemia is the most common childhood cancer. We are interested in the fundamental question how normal blood development is diverted into leukemia. What are the genetic and biochemical abnormalities that block cell differentiation, enhance proliferation and survival and confer the unique stem cell properties of self renewal to leukemia stem cells? We focus on chromosome 21 because of the mysterious association of leukemia with Down Syndrome. We utilize advanced genomic technologies, cell based assays of transformation of primary human and mouse stem cells, mouse models.

We study the mechanism of transformation of normal hematopoiesis (bottom) to leukemia (upper panel).
including transgenic, transplantation and explants of human leukemia. Our recent discoveries of the major involvement of the TSLP-IL7R-JAK2 pathway in leukemogenesis have lead to clinical trials with novel inhibitors of this pathway for high-risk leukemias in children and adults. The spread of leukemia to the brain is a major clinical problem as preventive therapy to the brain consisting of chemotherapy or irradiation causes long term side effects. We are therefore studying how leukemia cells spread to the central nervous system and developing mouse models to study this challenging problem.

Publications

Reviews

Grants
2016-2019 German Israel Foundation
2018-2021 ISF-NSFC mechanisms and targeting of high risk ALL in children and young
Development of Cancer Treatments Integrating Radiotherapy or Electrochemical Ablation and Immunotherapy

Positions
Professor Emeritus, Sackler Faculty of Medicine
President, Israeli Society for Cancer Research
Associate Editor, Mediators of Inflammation

Research
Cancer is currently the most devastating chronic disease affecting humankind. Today solid malignant tumors are mainly treated by surgery and/or radiotherapy to eradicate the local primary lesion, and chemotherapy, that is administered mainly to destroy remaining local or distant malignant cells. In spite of the advancement in preventing and treating cancer, morbidity and mortality remain high, especially in cases when tumors are highly metastatic, or cannot be completely removed. The main goal of our research projects is to develop in situ tumor ablation treatments of primary tumors and incorporate them with systemic chemotherapy and immuno-stimulatory agents, into combined treatment protocols.

In order to achieve efficient primary tumor ablation we developed two novel and powerful treatment modalities for solid cancer, which can be used instead or in combination with surgery. The first treatment, developed with Prof. Rafi Korenstein (Dept. Physiology & Pharmacology), is base on the use of intratumoral unipolar pulsed electric currents for the ablation (ECTA) of solid primary tumors. ECTA can be enforced by the concomitant use of chemotherapeutic agents in the treatment of tumors. The second cancer treatment, developed with Prof. Itzhak Kelson (School of Physics & Astronomy), is based on insertion into the tumor of radioactive wires that spread in the tumor alpha emitting atoms and can also be augmented by chemotherapy.

Our teams proved that these treatment modalities effectively destroy primary tumors, and reduce the metastatic load in experimental animal and human cancer models of melanoma, breast, colon, prostate, pancreas, lung, and squamous cell carcinomas. We found that in situ ablation of primary antigenic tumors led to the activation of immunological reactions, destroying remaining malignant cells in the primary tumor as well as in distant metastases.

Immunopharmacological methods aimed to stimulate the patient’s immune response against the cancer after local tumor ablation can make use of several approaches and we currently study the following: (1) Immunostimulation by adjuvants such as the oligonucleotides, CpG, which enforce weak immune reactions. (2) Inhibition of immunosuppressive mechanisms such as T-regulatory and Myeloid Derived Suppressor cells (MDSC). (3) Combination with inhibitors of immunological checkpoints such as anti CTLA-4 or anti PDL1/PD1.

Publications

Chapters and Reviews

Interaction of Nanomaterials and Electromagnetic Fields with Cells

Positions
Professor Emeritus, Sackler Faculty of Medicine
Chair, Commission K of the Israel National Committee for Radio Science of Israel Academy of Sciences and Humanities on Electromagnetics in Biology and Medicine
Editorial Board, Bioelectromagnetics

Research
The research activity addresses the following lines of research:

- Adsorption and uptake of nanoparticles by cells in relation to drug delivery and toxicity; Enhancement of uptake by electrical and chemical means. Treatment of cancer by electrochemical based approach; assessment of genetic and epigenetic risks following in-vitro exposure to electromagnetic fields associated with cell phone communication. Physiological regulation and underlying mechanism of cell membrane-cortical skeleton nanoscale mechanical fluctuations. Research methods used include routine cell biology and biochemical methodologies with emphasis on special cutting edge light microscopies possessing nanometric resolution such as Digital Holographic Microscopy (see below).

Publications

Hologram image of red blood cells (left), reconstructed phase image (middle) and 3D reconstruction of a single red blood cell (right)

Grants

The Wnt Signaling Pathway and Colorectal Cancer

Position
Associate Professor, Sackler Faculty of Medicine
Chair, Search Committee

Research
The lab focuses on the molecular and biochemical aspects of the Wnt signal transduction pathway. This important pathway plays a major role in various cellular processes including homeostasis, proliferation and differentiation. Thus, aberrant activation of the cascade can be extremely harmful and is implicated in many cancer syndromes and especially colorectal cancer. Our aim is to understand the molecular events underlying Wnt signaling, as well as develop novel therapeutic strategies to fight colorectal cancer.

Current projects in the lab include:
1. Identifying and characterizing new Wnt signaling components. We utilize different screening approaches to identify novel components of the Wnt cascade. Aldolase, EDD, CPE, HTRA1 and 14-3-3 are some of the new Wnt signaling regulators that were isolated and characterized in our lab.

2. Ribosomal Read-Through therapy. Certain compounds mediate ribosomal read-through of premature stop codons. We are working on identifying new and potent read-through agents and treating different diseases by restoring expression of full-length proteins.

3. Developing new anti-colorectal cancer treatment strategies. Based on our read-through preliminary results, a clinical trial was designed in collaboration with Dr. Revital Kariv from the Sourasky Medical Center. APC restoration is tested in inherited colorectal cancer caused by an APC germline nonsense mutation. Further analysis is conducted in colonic organoids – three-dimensional structures that mimic the gut and serve as an efficient tool in the investigation of cancer development.

4. The effect of Wnts on blood cells. Studying the Wnt pathways in blood cells is a completely new line of research, where we show that Wnts extend the life span of erythrocytes and improve their quality during storage and after transfusion.

Publications

Colonic organoids

Day 7 Day 8 Day 11 Day 15

K187 E-cadherin Ki67

Day 15

Colonic organoids

Grants

2016-2019 DOTAN RESEARCH CENTER in HEMATO-ONCOLOGY – Wnt5a – a novel treatment for hematological malignancy associated anemia

2018-2021 GIF – Systematic understanding of APC stop codon mutation readthrough

2018-2022 BSF – The Role of STRIPAK in Cell-Cell Junctions

2018-2020 SPARK – Preventing Cancer by Treating Predisposing Mutations

2020-2022 Israel Cancer Association Grant, Promoting personalized therapeutic intervention for FAP patients harboring APC nonsense mutations
Angiogenic Switch Using Rationally-Designed Theranostic Nanomedicines

Positions
Professor, Sackler Faculty of Medicine
President, Israeli Chapter of the Controlled Release Society (ICRS)
Chair, Tel Aviv University Institutional Animal Care and Use Committee (IAUCUC)
Faculty Coordinator, Postgraduate Program in Nanotechnology
Associate Editor, Advanced Drug Delivery Reviews
Associate Editor, Nanomedicine: Nanotechnology, Biology and Medicine
Co-Editor-in-Chief, Clinical Cancer Drugs

Research
Our research interests include investigations relating to tumor biology, tumor dormancy, mechanism of action of angiogenesis inhibitors, self-assembly of polymeric architectures and novel approaches to target cancer. Throughout, we have maintained an interest in understanding the biological rationale for the design of polymer therapeutics suitable for transfer into clinical testing. Our primary interests are the molecular basis of tumor angiogenesis and the rational design of polymer therapeutics. Our research includes identification and characterization of genes and microRNAs associated with the switch from a dormant avascular tumor phenotype to a fast-growing angiogenic tumor in human cancers and their corresponding mouse models.

We focus on the design and characterization of novel drug delivery platforms, including dendrimers and hyperbranched polymer–based nanoparticles, and the design of highly-selective targeting molecules integrating biology, chemistry, protein engineering, computational approaches, material sciences and nanotechnology to selectively guide drugs into pathological sites. Our vision is that novel approaches to target anticancer, anti-angiogenic drugs, miRNA and siRNAs to endothelial and tumor cells to potentially treat angiogenesis-dependent diseases could transform cancer into a chronically-manageable disease. Research methods used include sequencing, gene cloning, quantitative RT-PCR, immunofluorescence, cell culture, scanning electron microscopy, mass spectrometry, MALD, AFM, NMR, HPLC, in situ hybridization, bioinformatics, polymer chemistry, molecular imaging, angiogenesis assays, animal models of cancer (human xenografts

The angiogenic switch and the use of nanomedicines such as Polymer Therapeutics to treat angiogenic tumors. The enhanced permeability and retention (EPR) effect allows nanoconjugates to extravasate through the tumor leaky vessels, accumulate in the tumor bed selectively and internalize into the tumor epithelial and tumor endothelial cells via endocytosis.
in mice, syngeneic and transgenic mice models), pharmacokinetics and pharmacodynamics and 3D printing.

Publications

Reviews

Grants

2014-2019 European Research Council (ERC) Consolidator Award. PolyDorm: “Uncovering the molecular and cellular mechanism of tumor dormancy for the rational design of theranostic nanomedicines”

2016-2020 Merck Global Healthcare (co-PI, Shabat), Tagging of heteroaryl chemotherapeutic drug molecules with a ketone functional group and employing it for Antibody-drug conjugates application.

2017-2020 European Innovative Research & Technological Development Projects in Nanomedicine, framework of the ERA-NET EuroNanoMed-II: MultiNano@MBM (Co-PIs: Florindo, Jung, Recio)

2018-2023 Israel Science Foundation (ISF) grant, Elucidating tumor-host interactions to design precision nanomedicines for the prevention and treatment of melanoma.

The ATM-Mediated DNA Damage Response

Positions
Professor Emeritus, Sackler Faculty of Medicine
David and Inez Myers Chair in Cancer Genetics
ICRF Research Professorship

Research
Our laboratory investigates the cellular DNA damage response. This research stems from our interest in the human genetic disorder ataxia-telangiectasia (A-T), in which a central axis of the DNA damage response is missing.

Genetic defects in the DNA damage response lead to genomic instability syndromes, which usually include tissue degeneration, cancer predisposition, and sensitivity to specific DNA damaging agents. A prototype genomic instability syndrome is A-T. The disease is characterized by neuronal degeneration, immunodeficiency, chromosomal instability, sensitivity to ionizing radiation, and cancer predisposition. Our lab has been investigating A-T since its establishment in 1985. In 1995, after 8 years of intensive work, we identified the gene that is defective (mutated) in A-T patients and called it ATM (A-T, Mutated). We went on to study the activity of its product, the ATM protein, which turned out to be an enzyme with an activity alled “protein kinase”.

Our current research is aimed at a broader understanding of the ATM-mediated DNA damage response. Particular attention is paid to the molecular and physiological basis of A-T, which may eventually lead to new treatment modalities for the disease. We investigate this system with cell biology methods, gene targeting in mice, and systems biology strategies including high-throughput screens, advanced proteomics and bioinformatics. A study is underway aimed at understanding the DNA damage response in the part of the brain called the cerebellum, which is badly damaged in A-T patients. Another project is searching for a drug treatment for A-T patients based on our recent understanding of the disease.

Publications

Reviews

Grants

2014 – 2021 Israel Cancer Research Fund (ICRF Professorship)

2015 – 2020 The A-T Children’s Project

2016- 2020 US-Israel Binational Science Foundation
Position
Associate Professor, Sackler Faculty of Medicine
Israeli Representative, Euro Bioimaging

Research
Breast cancer is the most common malignant disease in western women. In the majority of cases, the cause of death in cancer patients is not the primary tumors, but complications derived from metastases. Cancer cell motility, invasion, and metabolism are fundamental steps in metastasis. MET, a tyrosine kinase receptor and its ligand, Hepatocyte Growth Factor/Scatter Factor (HGF/SF), induce specific signal transduction and metabolic pathways in tumor cells, leading to cell motility and invasion. MET FDA approved, and novel inhibitors are ideal for the treatment of patients with aberrant MET expression.

We are studying the effect of MET induced different motility patterns in ER-HER2 positive and TNBC cell lines. We developed classical image analysis and machine learning (ML) infrastructure to evaluate single-cell motility based on kinetic and morphological parameters. The single-cell machine learning uncovered a unique sub-population in the TNBC cell line that is abolished upon MET inhibition and chemotherapy. We are modeling this unique motility and studying the molecular mechanisms of this process. We are also developing single-cell infrastructure to screen for anti-MET and other driver gene product inhibitors. We are also evaluating the possibility to use this infrastructure for personalizing treatment for cancer patients.

We hypothesize that MET constitutive activation initiates tumorigenicity in association with inherited driver modifier genes (IDMGs). We have created a novel mice model based on 20 CC lines baring different genetic backgrounds that overexpress the mutated MET receptor (Metmut-CC). We show that MET and specific IDMGs induce non-compaction cardiomyopathy of the heart muscle, which leads to embryo lethality. We also identified 30 MET-IDMGs candidates that promote oncogenic signaling that dictates the development of MET induced carcinomas, lymphomas or sarcomas. The expression levels of those genes, in combination...
with MET, increase the prognostic capability by two orders of magnitude.

New evidence demonstrates that the crosstalk between p53/BRCA1 and MET signaling plays a significant role in tumor development and in response to therapy. Li-Fraumeni syndrome (LFS) is a rare cancer predisposition inherited in an autosomal dominant fashion that involves a germline mutation of tumor protein 53 (TP53). We are developing a deleted p53, BRCA1-CC animal in stand-alone, or in combination with Metmu models. Using the deleted p53 model, we isolated p53 specific IDMGs that dictate the development of sarcoma, lymphoma, and germ cell tumor. We are using the crisper analysis to study the role of these newly identified IDMGs in tumorigenesis and metastasis

The potential benefits of applying machine learning methods to omics data are becoming increasingly apparent, especially in clinical settings. We are utilizing molecular, cellular patho radiomics ML approaches to study the molecular mechanism of MET/p53/BRCA in tumorigenesis, isolating novel targets and developing new modalities for personalized, targeted therapy

QTL analysis defines a region in the genome that contains many genes. Only a few of those genes are the IDMGs that we are trying to isolate. We are using classical bioinformatics and ML to develop a knowledge-based candidate gene selection method. Based on this approach, we isolated several candidate IDMGs. We hypothesize that digital pathology and CT-derived radiomic features of MET/p53/BRCA-induced tumors can characterize tumor development, have prognostic value, and are in association with modifier genes. We are developing ML to study the digital pathology and radiomic features to distinguish differences in tumor types and correlate with gene association using QTL analysis. We are performing Kaplan-Meier and Cox regression based on features to build a prognostic model for overall survival.

Our previous research had an essential contribution to the use of MET inhibitor as a novel target for therapy. We hope that our current basic research will further contribute to the identification of novel MET/p53/BRCA targets and biomarkers that will facilitate targeted personalized therapy.

To study Met activation by HGF/SF in vivo, we used a xenograft mouse model in which DA3 cells expressing the fluorescent protein mCherry (DA3-mCherry) are injected orthotopically into mice mammary glands. Contrast media ultrasound-based Met functional molecular imaging (FMI) demonstrated that HGF/SF-induced increased hemodynamics is dependent on Met concentration and can be dramatically reduce upon inhibition of the receptor and it’s signaling pathway; Whole animal spectral imaging enabled detection of sub-millimeter metastases demonstrating fast developing micrometastatic spread of the tumor; Macro to Micro and two photon confocal imaging demonstrated HGF/SF-induced changes in blood flow at single vessel resolution, localization of metalloprotease and catapsine activity at the tumor edge and increase in single cell motility.

Met molecular imaging demonstrated that Met signaling modulation plays a major role in breast cancer tumor growth and development. These emerging MI modalities may help tailor Met-targeted therapy.

Publications

Grants
2017-2019 Israel Science Foundation
2004-2020 Breast Cancer Research Foundation
2017-2021 Israel Science Foundation
2020-2021 Leon Recanati Heritage Center
Significant myocardial regeneration occurs in the neonatal heart of a mouse after injury. Cardiomyocyte proliferation is indicated by positive nuclear staining for phospho histone 3 (purple) – Tal Konfino, Natali Landa, Yoni Leor.
Normal and Diseased Potassium Channels in Human Brain and Heart

Position
Professor, Sackler Faculty of Medicine
Andy Libach Professorial Chair in Clinical Pharmacology and Toxicology

Research
Reaching an understanding in molecular terms of the mechanisms by which changes in membrane potential regulate cellular events is the main concern of our research. We focus our interest on potassium channels because they play crucial roles in many cellular functions such as shaping cardiac and neuronal action potentials, tuning neuronal firing patterns, synaptic integration or modulating neurotransmitter release. Using the powerful combination of molecular biology, biophysics, biochemistry and electrophysiology, our research aims at elucidating the structural, biophysical and physiological attributes of potassium channels in human brain and heart and whose mutations lead to

Activation of M-type potassium channels by our homemade NH29 opener inhibits evoked spike discharge in dorsal root ganglion sensory neurons.

Docking of the NH29 gating-modifier molecule onto the voltage sensor domain of the Kv7.2 potassium channel.
major neurological and cardiovascular disorders like epilepsy, myokymia, atrial or ventricular fibrillation.

Publications

Manuscripts

Reviews

Grants

2018-2021 Israel Science Foundation, Calmodulin and PIP2 interactions in Kv7 potassium channels

2020-2022 Kamin, SK4 K+ channel blockers: a new treatment for atrial fibrillation
Signal Transduction by Neurotransmitters in Brain and Heart in Health and Disease

Position
Professor of Physiology, Sackler Faculty of Medicine
Chair, Department of Physiology and Pharmacology
Morris and Helen Mauerberger Chair for Neuropharmacology

Research
Electrical activity of excitable cells is their most important feature, which allows the performance of fundamental functions of brain, heart and muscle. We are addressing a key issue in modern cardiology and neurobiology: how neurotransmitters regulate cardiac cells and neurons by acting on ion channels – proteins that underlie the electrical activity in these cells; and how errors in these processes cause disease. Main projects in the lab:

- Function and regulation of receptors, G proteins, Ca\(^{2+}\) and K\(^{+}\) channels in health and disease; Ion channel-related hereditary cardiac and neurological disorders (channelopathies); Mechanisms of coupling of G protein-coupled receptors with effectors; Molecular mechanisms of bipolar disorder.

Research methods: Electrophysiology, Neurophysiology, Heterologous Expression, Protein Biochemistry, Fluorescence Resonance Energy Transfer (FRET), Molecular biology, Mathematical and Kinetic Modeling and Simulation, Immunocytochemistry

Publications
Benmocha Guggenheimer A, Almagor L, Tsemakhovich V, Tripathy DR, Hirsch JA, Dascal N. Interactions between N and C termini of α1C

Studying GIRK channels expressed in a heterologous system (Xenopus oocytes). Intramolecular fluorescence resonance energy transfer (i-FRET) shows interactions of cytosolic N- and C-termini of the channel. A, GIRK channel labeled with two fluorescent proteins. B, Imaging the expressed fluorescent proteins with a confocal microscope. C, D, Example of use of FRET analysis to study conformational changes in the channel caused by neurotransmitter, G proteins or drugs. E, Ga and Gβγ synergistically alter the conformation of GIRK1 subunit.
subunit regulate inactivation of CaV1.2 L-type Ca(2+). *Channels* (Austin). 2016;10:55-68.

Reviews

Grants

- 2019-2021 German-Israel Foundation (GIF). Novel mechanisms of regulation of cardiac L-type Ca channels by protein kinase A, with Enno Klussmann, MBC Berlin.
Investigating the Cardiac Autonomic System Among Brain Damaged Patients

Position
Senior Lecturer

Research
Stroke, traumatic brain injury and cerebral palsy are the most common causes of physical disability. Autonomic instability is a common phenomenon post brain damage, with signs and symptoms of hyper-stimulation of the sympathetic nervous system. We study the connections between physical disability and the cardiac autonomic regulation system. We assess the cardiac autonomic response to different stimuli and its immediate and long-lasting adaptation to different physical training protocols.

Publications

Shapira-Vadler O, Treger I, **Katz-Leurer M**. Muscle strength, function and heart autonomic regulation system recovery at the sub-acute stage post stroke. Eur Neurol. 2015;74:154-7

Grants

2018-2020 European Research Projects on External Insults to the Nervous System
Mechanisms, Regulation and Pharmacology of Calcium Transporting NCX Proteins

Positions
Professor, Sackler Faculty of Medicine

Research
Calcium (Ca²⁺) is a major regulator in the living cell. In many cell-types the Na⁺/Ca²⁺ exchanger proteins (NCX) represent a major Ca²⁺ extruding system and thus, play a key role in regulating the Ca²⁺-dependent events in the cell. Three NCX genes form numerous splice variants, which are expressed in a tissue-specific manner to regulate excitation–contraction coupling in heart, long-term potentiation and learning in brain, blood pressure, immune responses, neurotransmitter and hormone secretion, kidney Ca²⁺ reabsorption, mitochondrial bioenergetics, etc. Altered expression and regulation of NCX proteins is a chief contributor to Ca²⁺-driven tissue-remodeling in heart failure, cerebral ischemia, hypertension, diabetes, renal malfunction, muscle dystrophy, etc. For example, in cardiac disease a single isoform/splice variant (NCX1.1) is overexpressed, thereby representing a primary concern for life-threatening arrhythmias and contractile malfunction. Selective pharmacological targeting of NCX variants is expected to recover Ca²⁺ homeostasis in predefined cell types and thus, may improve desired activity of altered tissues/organs. Since this breakthrough remains challenging our research efforts are focused on two principle issues: a) To resolve structure-activity relationships underlying the function and regulation of diverse NCX variants; b) To develop new experimental approaches for selective pharmacological targeting of tissue-specific NCX variants with a goal of providing new opportunities for preventing and effective treatment of harmful diseases. In this respect we investigate structure-activity relationships in the wild-type and mutated proteins by exploring a wide spectrum of techniques (stopped-flow and ion-flux assays, FRET, SAXS, ITC, X-ray crystallography, confocal microscopy, patch-clamp, etc). In searching the regulatory mechanisms of CBD1 and CBD2 domains we found that the tissue-specific splice segment, located on CBD2, shapes the regulatory specificity of the primary Ca²⁺ sensor located on CBD1. These findings may allow the identification of drug candidates targeting the disease-related NCX variants.
Publications

Reviews

Khananshvili, D. Sodium-Calcium Exchangers (NCX): Molecular Hallmarks Underlying Tissue-Specific and Systemic Functions, *Pflügers Arch*.

Grants

2018-2023 Israeli Science Foundation
Cardiovascular Regenerative Medicine and Targeting of Inflammation and Fibrosis

Positions

Professor of Cardiology, Sackler Faculty of Medicine
Chair, MD-PhD Program
Director, Neufeld Cardiac Research Institute, Tel Aviv University
Director, Tamman Cardiovascular Research Institute, Sheba Medical Center
Director, Sheba Center of Regenerative Medicine, Stem Cells and Tissue Engineering
David Halpern Chair of Cellular and Molecular Cardiology

Research

Our lab is focused on translational research. Specifically, we study cardiovascular regenerative medicine, stem cells and tissue engineering. In addition, we aim to target cardiovascular inflammation and fibrosis using novel nano-medicine and a theranostic (therapy + diagnosis) approach. We use a combination of gene profiling, new biomaterials, liposomes, tissue engineering, physiological testing, and molecular imaging technologies, to understand heart cell biology in vitro and in vivo. Particularly, we work on the development of novel nano-therapies for cardiovascular disease.

Publications

Myocardial regeneration in a neonatal heart of a mouse, 3 days after apical resection. We used the heart of a newborn mouse to study the mechanism of myocardial regeneration and repair. The regenerating myocardium is characterized by cardiomyocyte (cardiac actin, red) dedifferentiation, and proliferation. Phospho-histone 3 immunostaining detects dividing nuclei (blue) and mitotic activity. Nuclei are stained green with DAPI.

Grants

2014-2019 Israel Science Foundation, Role of macrophages in myocardial regeneration

2020-2021 Israeli Innovation Authority COVID-19 Grant
Dr. Lihi Adler-Abramovich, Ph.D.
Department of Oral Biology
The Goldschleger School of Dental Medicine
Sackler Faculty of Medicine

Laboratory of Bioinspired Materials and Nanotechnology

Positions
Senior Lecturer, Sackler Faculty of Medicine
TAU Center for Nanoscience and Nanotechnology
The Center for the Physics and Chemistry of Living Systems

Research
Research in the Laboratory of Bioinspired Materials is focused on mimicking self-assembly processes that occur in nature, including biomineralization and the organization of short peptides and amino acids into ordered nanostructures. We are a material science laboratory with an emphasis on organic chemistry and medical-biological applications. The group is developing new organic materials that are used for various applications, such as 3D hydrogels for bone tissue regeneration, which exhibit extraordinary mechanical properties and durability, along with biocompatibility and controlled drug release. A central technique is the formation of hybrid hydrogels, using two or more different building blocks, resulting in a 3D hydrogel with novel and diverse properties that can be easily fine-tuned. In addition, the laboratory is interested in antimicrobial activity of nanostructures for coatings and incorporation into composite materials for dental medicine application.

Publications

Reviews and chapters

Grants

2016 – 2019 Model system for biomineralization and bone formation in microgravity, Space Program, Ministry of Science, Technology and Space.

2017-2020 Synthesis and characterization of 3D nanostructure for bone tissue regeneration, Israel Science Foundation (ISF) – New-Faculty Equipment Grants.

2017-2021 Smart bionanomaterials for solar-driven hydrogen production, Israel Science Foundation (ISF) – Research Centers

2017-2022 SNOW-Non woven smart materials, Maagad-Israeli Innovation Authority

2018-2020 Development of dental materials with anti-biofilm properties, Kamin-Israeli Innovation Authority

2018-2021 Developing a platform of peptides nano-structures containing enzymes capable of degrading signal molecules involved in cell to cell communication, Ministry of Agriculture

2018-2020 Formation of Anti-Bacterial Self-Assembled Peptide-Based Nano Coatings to Titanium Implants, International Team for Implantology (ITI)

2018-2020 Development of Dental Materials with Anti-Biofilm Properties, Kamin- Israeli Innovation Authority
Biochemical Aspects of Dental Restorations and Orthodontic Tooth Movement

Positions

Professor, Sackler Faculty of Medicine
Head, Department of Oral Biology

Research

Biomechanical behavior and response to dental treatments are studied in our laboratory and our in vivo studies.

Restorative materials, including bonding materials, are tested for performance (e.g., durability and strength). We work on improving their properties by combining nano-tubes with the materials (in cooperation with the Molecular Microbiology and Biotechnology Department). For this, we study their shear strength (Fig. a), diametral-tensile strength and shear bond strength.

Aiming to understand the phenomenon of vertical root fractures, we work on evaluating the influence of various posts materials (used in endodontic treatment) on root-surface strain development by measuring the surface strains with strain gauges.

Regarding orthodontics, we try to understand the behavior and influence of transparent aligners on the movement of teeth in vivo (Fig. b).

Publications

Behavioral Sciences in Dentistry

Positions
Professor Emeritus, Sackler Faculty of Medicine

Research
Our group specializes particularly in the field of behavioral sciences in dentistry including clinical hypnosis, oro-related behavioral dysfunctions, psycho physiological aspects of acute and chronic pain, and stress in clinical and other settings.

Research topics:
1. Stress, pain and behavior in dental care
2. Oro-related behavioral dysfunctions (dental fear, anxiety and phobia, excessive gagging reflex)
3. Chronic orofacial pain and TMD
4. Psychosocial factors in pain
5. Sexual and oral functioning

Publications

Chapters
Facial and Dental Anthropology: Evolutionary Aspects in Physiological and Pathological Processes in Human Dentition

Position
Senior Lecturer, Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine

Research
Many of the current oral diseases and malformations have their roots in our evolutionary history. Knowing the evolutionary processes that led to the current shape and size of our skull and mandible may greatly bear on our understanding of phenomena such as malocclusions (i.e., crowding, rotation, overbite), dental malformations (i.e. impaction, missing and supernumerary teeth) and oral diseases (caries, attrition, periodontal diseases). Treatment strategy should take into consideration evolutionary reasoning involved in shaping our face and jaws, ignoring them may end, in the long run, in treatments’ failure.

Understanding the evolutionary constrains that have acted through time on our masticatory system may help us planning and establishing better treatment strategies. Long-term evolutionary processes such as decrease in jaws and teeth size, higher prevalence of impacted teeth and the loss of teeth in the arch, are all important factors that should be considered.

Publications

Sarig, R., Gopher, A., Barkai, R., Rosell, J., Blasco, R., Weber, G.W., Fornai, C., Sella-Tunis, T., Hershkovitz,

Malocclusion of developmental origin already present in early anatomically modern humans (AMH) (the present case being the oldest known case, dated to ca. 100,000 years) (A). Morphological evaluation of molar teeth using 3D scanning and geometric morphometric analysis (B).

Sella-Tunis, T., Pokhojaev, A., Sarig, R., O'Higgins, P., May, H. Human mandibular shape is associated with masticatory muscle force. Scientific Reports, 8, 6042. 2018

May, H., Sella-Tunis, T., Pokhojaev, A., Peled, N., Sarig, R. Changes in mandible characteristics during the terminal Pleistocene to Holocene Levant and their association with dietary habits. Journal of Archaeological Science: Reports, 2018

Grants
2016-2019 Israel Science Foundation
2018-2019 Irene Levi-Sala CARE Archaeological Foundation
2018-2020 Recanati Medical Research Foundation, Sackler Faculty of Medicine
2018-2021 National Geographic Society
2019-2021 Australian Research Council
Re-activation of beta-cell gene expression in adult human islet cells expanded in vitro 32-fold and treated with redifferentiation factors (immunofluorescence analysis: red, C-peptide; green, PDX1; blue, DAPI – Elad Sintov, Shimon Efrat.)
Cell Replacement Therapy for Diabetes

Position
Professor, Sackler Faculty of Medicine
Chair, Department of Human Molecular Genetics and Biochemistry
Nancy Gluck Regan Chair in Juvenile Diabetes

Research
Our research focuses on the development of a cell replacement therapy for diabetes, in which the insulin-producing pancreatic beta cells are destroyed or malfunction.

Our approaches for generation of an abundant source of cells for transplantation include expansion and differentiation in tissue culture of beta cells from human organ donors, as well as differentiation of human stem cells into insulin-producing cells.

Publications

Reviews
Intracellular Membrane Trafficking

Position
Professor, Sackler Faculty of Medicine

Research
Our laboratory focuses on investigating the protein and membrane interactions that delineate membrane transport processes. We are especially interested in the functions of cargo recognition, concentration and targeted delivery to distinct cellular membranes. All transport processes use the membrane as their final substrate for example: fusion, budding, generation of distinct domains and the establishment of curvature. Combined, these functions shape the cellular transport machinery, one of the major systems that maintain homeostasis communication and response to the external environment in health and disease.

To understand these processes in detail, one must recognize that protein–protein as well as protein-lipid interactions are involved. Studying the later, namely protein-lipid interaction is challenging since these interactions are less specific and complex experimental systems are to be used. In other words, to study the association between a protein to its proximal native lipid environment, membranes cannot be disrupted or solubilized.

In our laboratory, we combine traditional biochemical analysis with live cell imaging and quantitative kinetic modeling to gather information on the dynamic features of the cellular secretory transport machinery. Experiments are carried out using expression of fluorescent protein tagged proteins in living intact cells using laser scanning confocal microscopes. We use a range of state-of-the-art experimental setups.
such as: Time-lapse imaging, three-dimensional reconstruction, multicolor imaging, photobleaching/photoactivation–based manipulations and Bi-Molecular fluorescent complementation (BiFC). Kinetic modeling and simulation software is often used to extract values of kinetic coefficients or to perform model testing from the wealth of information hidden in the images sequences.

Publications

Grants
2016-2019 Israel Science Foundation (ISF)
Beta-Cell Function and Dysfunction: the Role of Microenvironmental Cues

Position
Senior Lecturer, Sackler Faculty of Medicine
Director, Biomed@TAU Research Hub, Developmental Biology

Research
Maintenance of blood glucose levels is dependent upon the tight regulation of insulin secretion from pancreatic beta-cells. Insufficient insulin secretion, whether due to reduced beta-cell numbers, or impaired beta-cell function, leads to diabetes. Our group studies how insulin-producing beta-cells maintain their functionality in health, and how it is lost in diabetes. To this end, we research the cross talk between insulin-producing cells and cells in their microenvironment. Our results indicate the pivotal role of pericytes in the regulation of insulin secretion, and blood glucose levels. Using transgenic mouse models, we study how insulin-producing cells communicate with their microenvironment, and how this communication is affected during diabetes.

In addition, we study how the pancreas develops during embryogenesis. Our findings, along with previous findings, help to consolidate that pancreas mesenchymal cells are crucial for proper pancreas and beta-cell embryonic development. Using transgenic mouse models, we investigate what signals are produced by mesenchymal cells, and how these signals may guide beta-cell development.

In summary, our goals are to uncover the different aspects of pancreas biology, namely its development in the embryo, and its function in the adult. We aim to answer these scientific questions by focusing on the interplay between beta-cells and other pancreatic mesenchymal cells.

Beta-cell microenvironment in the embryonic and adult pancreas. Left, Mesenchymal cells (green) surround the developing pancreatic bud (red and blue) and support normal organogenesis. Right, Pericytes (green) form a network around the Islet of Langerhans (gray) in the adult pancreas and support insulin secretion from beta-cells.
cell types in both healthy and diseased mouse models.

Publications

Reviews

Grants

2018–2021 Future and Emerging Technologies (FET) Open, European Commission

2017–2019 European Foundation for the Study of Diabetes (EFSD) / Novo Nordisk Programme for Diabetes Research in Europe

2018-2023 Israel Science Foundation (ISF) Individual Research Grant
Erythropoietin and Its Receptor in Health and Disease – Basic and Clinical Aspects

Positions
Professor, Sackler Faculty of Medicine
Head, Dr. Miriam and Sheldon Adelson Graduate School of Medicine, Sackler Faculty of Medicine
The Lily and Avraham Gildor Chair for the Investigation of Growth Factors

Research
Our research is focused on erythropoietin (EPO), the major hormone that regulates erythropoiesis, operating via activation of its cell surface receptor (EPO-R) on erythroid progenitor cells. Our choice to work on this EPO/EPO-R system was initiated to employ it as a model for understanding basic mechanisms of hormone/receptor function and regulation. Through this research, in a longstanding collaboration with Prof. Mittelman from the Sourasky Medical Center, we made a novel, original discovery, suggesting that EPO may actually act as a pleiotropic hormone with anti-neoplastic, immunomodulatory activities. Our research is thus focused on both the basic mechanisms of hormone/receptor interaction, as well as the function of this hormone as an immunomodulator, and as we have most recently shown, a regulator of bone metabolism (in collaboration with Dr. Yankel Gabet from the Department of Anatomy and Anthropology, Sackler Faculty of Medicine). The studies are based on a variety of in-vitro and murine experimental models, and also include an avenue of elucidating the relevance and possible clinical application of the results.

Publications

Chapters and Reviews

Grants

2017-2021 Israel Science Foundation – A Role for Erythropoietin in Regulation of Bone Metabolism by Monocytes and B cells

2018-2020 German Israeli Foundation (Together with Y. Gabet, TAU and B. Wielockx and M. Rauner, Dresden) – Pathophysiological impact of erythropoietin on bone density and strength

2020 Dotan Seed Grant (Together with Y Gabet, M Mittelman, H Oster) Cell Competition as a Driver of Clonal Expansion and Dominance in Myelodysplastic Syndromes

2020-2021 Dotan Hemato Oncology Fund, Cancer Biology Research Center, Tel Aviv University (Together with Y Gabet, M Mittelman, H Oster) Implementation of a non-erythropoietic derivative of erythropoietin for improving skeletal outcome in multiple myeloma and myelodysplastic syndromes

2020-2021 Israel Cancer Association (Together with Y Gabet) Cannabinoid agonist raises hemoglobin levels: Implications for treating anemia in cancer

2020 Gassner Fund (Together with Y Gabet, V Shalev).
Molecular Biology of the Insulin-Like Growth Factor System

Positions
Professor, Sackler Faculty of Medicine
Head, Yoran Institute for Human Genome Research
Lady Davis Chair in Biochemistry

Research
The insulin-like growth factors (IGF1, IGF2) are a family of hormones with important roles in growth and development. The biological actions of the IGFs are mediated by the IGF1 receptor (IGF1R), a cell-surface receptor related to the insulin receptor. The IGF1R signaling pathway has an important role in the biochemical chain of events linking obesity, diabetes, and cancer. Our work is aimed at understanding the molecular and cellular events responsible for IGF1R expression in cancer. These studies are expected to generate information that might translate into more efficient IGF1R targeting approaches. Furthermore, a better understanding of the molecular biology of the IGF system will have important ramifications in areas such as obesity, metabolic syndrome, diabetes, and cancer research. Specific topics include:

- Interplay between the IGF signaling pathways and cancer genes (p53, BRCA).
- IGF1R targeting as a therapeutic approach in cancer.
- Epigenetic mechanisms in cancer development.
- Biological activities of insulin analogues.
- Metabolism and cancer.

Publications

Reviews

Grants
2018-2019 Identification of TXNIP as a novel IGF1-dependent longevity gene. Recanati Fund for Medical Research, Tel Aviv University
Role of the Insulin Receptor in Skin and Implications to Diabetes

Position
Senior Lecturer, Sackler Faculty of Medicine
Co-editor Diabetes/Metabolism Research and Reviews
D-Cure scientific committee

Research
The insulin receptor (IR) is one of the best-studied tyrosine kinase receptors. The receptor transmits insulin actions, and functions in the metabolic regulation of glucose in insulin sensitive tissues – muscle, liver and adipose tissue. In recent years, however, additional roles have emerged for the IR in various tissues including the regulation of transcription and translation, cell proliferation, differentiation and more.

Our research interests center on the role of insulin and the IR in skin. The importance of insulin and the IR in skin is evident when insulin action is impaired in insulin resistance and diabetes: One of the major known insulin resistance- and diabetes-associated skin complications is the impaired wound healing leading to amputations, increased illness and high mortality rates. Another skin complication associated with insulin resistance and diabetes is the marked increase in the risk, aggression, and recurrence of non-melanoma skin cancer.

We have identified a previously unknown unique signaling pathway in which insulin via the IR regulates the assembly of the cellular cytoskeleton in skin cells. As can be seen in the figure attached below, IR inactivation, mimicking insulin resistance, led to a striking abnormality in the structure and assembly of cytoskeleton filaments in the skin epithelial cells.

Such an abnormality in cytoskeleton assembly can explain the observed changes in cellular division, proliferation and migration of IR null skin cells. Furthermore, since these processes are involved in wound healing from one hand as well as in tumorigenesis on the other hand, the disassembled cytoskeleton could be part of the pathogenesis...
leading to the development of the diabetes-associated skin pathologies.

In order to prove the importance of insulin and the IR in skin, and more specifically to wound healing and to skin tumorigenesis, we generated a skin-specific IR null mouse. In this mouse, the IR is inactivated only in the skin epidermis, without the development of hyperglycemia or other biochemical changes. By studying this mouse, we demonstrated that lack of epidermal IR by itself led to severely impaired wound healing. Furthermore, in another set of studies we demonstrated that IR inactivation in skin led to a marked decrease in transformation of skin cells in vitro as well as in skin tumorigenesis in vivo. Moreover, IR inhibition led to the reversal of transformation of transformed skin cells.

Our results indicate that the skin itself is abnormal in diabetes as a result of impaired insulin signaling, and that it should become an independent target for treatment and prevention of diabetes-associated skin pathologies. This research will lead to new means to reverse and prevent diabetes-associated skin complications from developing, effectively treat them, and halt their progression.

Publications

Patent
US 14/521,494 Methods and Compositions for Treating Cancer
Alternative Splicing Generates Transcriptomic Diversity in Genetic Disorders & Cancer

Positions
Professor, Sackler Faculty of Medicine
Boris Quentin Chair in Pathological Chemistry

Research
By utilizing the unique strengths of our research group in bioinformatic analyses as well as in genomic and advanced molecular biology methodologies, we are able to make groundbreaking discoveries in the field of alternative splicing. We study how alternative splicing generates higher level of organism complexity, especially in human. However, this comes with a price, and alternative splicing also inflicts many genetic disorders and cancer. Our research involves these two facets of alternative splicing. On one hand, we found how new functions evolved via the generation of new exons (mostly in human). We have also showed how different layers of gene expression affect each other, and found that chromatin organization and epigenetic markers (DNA methylation) mark the exon-intron structure. We also found that during the evolution of warm-blooded organisms two exon-intron gene architectures developed, and these also reflect the different effects of mutations on splicing in cancer and other genetic disorders. On the other hand, we study the impact of splicing abnormalities on colon and lung cancer, and we have recently discovered a new therapy for Familial Dysautonomia, a neurodegenerative disease caused by a splicing defect in the nervous system.

Publications

Reviews

Grants

2016-2019 DKFZ-MOST, Network-based analysis of alternative splicing regulation

2018-2020 German-Israel Research Foundation Grant

2020-2024 Israel Precision Medicine Partnership Program (IPMP), with the Israel Science Foundation (with Talma Hendler)
Genomic Analysis of Hereditary Hearing Loss

Positions
Professor, Sackler Faculty of Medicine
Vice Dean, Sackler Faculty of Medicine
Drs. Sarah and Felix Dumont Chair for Research of Hearing Disorders
Associate Editor, European Journal of Human Genetics, Human Genomics
Director, Biomed@TAU Research Hubs
Director, Single Cell Genomics Core

Research
Our primary interest is the genetic basis of hereditary hearing loss or deafness. Our group is working towards the identification, characterization and regulation of genes associated with hereditary hearing loss. For gene discovery, we focus on the Israeli Jewish and Palestinian Arab populations in the Middle East. Our studies have led to the identification of mutations in over 30 genes, since this is a genetically heterogeneous disease. We are employing deep sequencing, also known as massively parallel sequencing, to identify mutations using the latest genomic technology. Our work has provided the link between gene discovery and clinical diagnosis in genetic clinics in medical centers throughout Israel. In addition, we have studied the auditory and vestibular systems of a dozen mouse mutants, focusing on mutation identification, morphological and functional analysis of the organ of Corti and its cells, and behavioral analysis of hearing and balance disorders. This has allowed us to define the pathways leading to deafness in mouse models for human deafness. We have demonstrated that microRNAs are essential for development and function of inner ear hair cells in vertebrates through microRNA expression, mouse mutants and target identification. We have recently isolated long non-coding RNAs (lncRNAs) by RNA-seq from the cochlear and vestibular sensory epithelium. Reconstruction and filtering of the transcriptome of the inner ear led to 3,239 lncRNA genes, yielding 721 novel lncRNAs. We are now working on understanding their mechanisms in the auditory and vestibular systems. Finally, we are building epigenomic maps of DNA methylation, chromatin structure, and histone

Variants in GPSM2 lead to hearing loss in humans and mice. a) Palestinian Arab family with profound hearing loss. b) Structural alignment of the human and mouse GPSM2 N-terminus region, indicating high structural similarity. c) The Gpsm2 truncation in mice causes defective morphogenesis of hair bundles of inner and outer hair cells. From Bhonker et al. 2016.
modifications of the auditory system and integrating them with transcriptomics to establish pathway-specific transcriptional regulatory networks (TRNs).

Publications

Manuscripts

Reviews and Chapters

Grants

2018-2023 National Institutes of Health/NIDCD R01

2019-2020 Tel Aviv University Breakthrough Innovative Research Grant, Circumventing Irreversible Ototoxic Effects of Aminoglycoside Antibiotics Required for the Treatment of Infectious Diseases, with Co-PI: Micha Fridman, School of Chemistry, TAU

2019-2023 Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine Award

2019-2023 Big Data to Therapy: Personalized Medicine for the Deaf in the Diverse Jewish Population, Israel Precision Medicine Partnership Program (IPMP)
Genomic-scale Bioinformatics Exploration of Gene Regulation

Positions
Senior Lecturer, Sackler Faculty of Medicine

Research
Our research focuses on understanding mechanisms of gene regulation, which is an intricate multi-layer process. We apply bioinformatic methods to elucidate, on a genomic scale, how gene expression is regulated at the layers of gene transcription, transcript stability and protein translation. We aim at discovering how interruptions in these regulatory mechanisms contribute to the development of human pathological conditions, and how natural genomic variation affects our predisposition to common human diseases. Our analyses are based on novel deep-sequencing techniques that greatly boost our ability to systematically study gene regulation and decipher regulatory layers that were until recently largely unexplored.

Publications

Grants

2018 – 2022 The epitranscriptome in regulation of RNA fate (DIP)
2018 – 2022 Genomic delineation of transcriptional networks that determine auditory hair cells fate (BSF)
2019 – 2020 Multi-layer analysis of the dynamic interplay between 3D genome organization and gene regulation during early stem cell differentiation (KBT)
2019 – 2022 Genomic analysis of alternative polyadenylation in health and disease (ISF)
Genomic Biomarkers for CNS Drug Response

Positions
Associate Professor, Sackler Faculty of Medicine
Director, National Laboratory for the Genetics of Israeli Populations
Senior Editor, Pharmacogenomics
Editorial Board: Trends in Molecular Medicine, Genome Medicine, CNS Drugs, Drug Development Research, Pharmaceutical Biology Genomic Medicine
Member of the NIH Pharmacogenomics Research Network (PGRN)

Research
Our lab, serving as the National Laboratory for the Genetics of Israeli Populations (http://nlgip.tau.ac.il), was established in 1995 by the Israel Academy for Sciences and Humanities as the National Biobank of Israel. The biobank includes DNA samples and immortalized lymphoblastoid cell lines from over 2000 unrelated healthy donors representing the large genetic diversity of Jewish, Arab and Druze communities of Israel. This novel resource has been applied by hundreds of research groups in Israel and abroad.

Our primary interest is in finding genomic biomarkers for the response to CNS drugs –, for improving personalized medicine with respect to both treatment efficacy and safety. Our research is currently focused on drugs for treating major depression, bipolar disorder, and Alzheimer’s disease. These CNS diseases inflict huge societal costs, and biomarkers are needed for better treatment. We use human immortalized lymphoblastoid cell lines from unrelated healthy donors for comparing drug response and searching for genomic biomarkers, including mRNA for genes, and non-coding RNAs such as microRNAs (miRNAs) and small nucleolar RNAs (snoRNAs).

Among genes that we identified as tentative genomic biomarkers for the response to anti-depressant drugs, two genes, CHL1 and ITGB3, have been replicated in clinical cohorts of major depression patients, lending support for our novel research approach.

A recent publication from our lab has been cited in a report by Scientific American: Unraveling the Mystery of How Antidepressions Drugs Work:

In addition to the research on genomic biomarkers, we are involved in research on bioethics and societal aspects of human genomics research.

Publications

Reviews, Commentaries and Letters

microRNA and DICER in Differentiation and Malignant Transformation of Melanocytes

Position
Associate Professor, Sackler Faculty of Medicine

Research
Our scientific interests involve the role of microRNAs in development, differentiation and malignant transformation. Focusing our studies on melanocytes will provide the foundation for developing novel approaches in the prevention, diagnosis, and treatment of skin cancer in general and melanoma in particular. In addition, we are intrigued by the possibility of using these systems as a model for exploring basic microRNA biogenesis beyond the cell specific context.

Skin section, subject to H&E (left) and Fontana-Masson staining of melanin (right), shows pigmented and unpigmented regions of (floxed/floxed); Dct(Cre/Cre); Dct-lacZ; K14-scf mouse skin. Immunofluorescent staining of the skin section indicates expression of DICER (green) and S100 (red) (400x magnification). S100-stained epidermal and hair follicle melanocytes appear red; DAPI-stained nuclei appear blue. Merged image shows co-localization of DICER and S100 in the pigmented area of the skin (merge) compared to unpigmented region. Arrows in enlarged merge picture indicate the S100 and DICER co-localization.
Publications

Grants

2016-2019 Melanoma Research Alliance (MRA)

2016-2021 European Research Council (ERC)
Genetic and Metabolic Research of Age-Dependent Chronic Degenerative Disease

Positions
Professor Emeritus, Sackler Faculty of Medicine
Pollak Chair of Biological Anthropology
Honorary Research Fellow, King’s College Medical School, London, UK

Research
Our research is focused on age-related chronic degenerative disease, such as osteoporosis, osteoarthritis, including disc degeneration disease and muscle mass loss – sarcopenia. The prevalence of sarcopenia is as high as 30% for those above 60 years old. In the elderly, the loss of muscle mass is correlated with profound physical impairment and disability with severe clinical consequences, including mobility loss, osteoporosis, osteoarthritis, increased fracture risk, dyslipidemia, insulin resistance, and increased mortality. However, it is also often developed at a much younger age. Despite the above clinical significance and despite the fact that a strong familial component in muscular mass variation is well established, there is almost a total lack of molecular genetic studies of this trait. This is in a great contradiction to studies concerning the other two body composition components: bone and fat mass, for each of which many dozens of studies have been published during the past two decades. It is therefore timely and imperative to invest extensive scientific research into the genetic and metabolic mechanisms of early and rapid muscle mass loss. The other important subject of our current research is low back pain, representing most common musculoskeletal disorder in general human population. However, it is still unclear which individuals develop it. We examine the contribution of genetic factors, lumbar disc degeneration and other potential risk factors in a general human population.

Publications

Reviews

Amusa G, Feehley T, Bitok JK, Livshits G, Gertsik N. Traditional approaches for company valuation are

Genomics, Gene Regulation, and Human Diseases

Positions
Associate Professor, Sackler Faculty of Medicine, Sackler Faculty of Medicine
Academic Director, ScienceAbroad
Edmond J Safra Center for Bioinformatics
Sagol School of Neuroscience

Research
The Shomron research team focuses on the analysis of genomics aimed at understanding human diseases. Combining high-throughput methods and bioinformatics (such as Artificial Intelligence and Deep Learning), our team’s research explores DNA changes and gene regulators. Our goal is to reach a global perspective on the roles DNA and RNA play during disease development.

Among our projects: Identification of microRNAs that are in the intersection of several oncogenes; Revealing the effect of coding and non-coding RNAs on pharmacogenomics and personalized medicine; Profiling pathogens in human tissues based on deep sequencing of DNA and RNA molecules; Running advanced rapid DNA and RNA sequencing together with Deep Learning analysis for real-time feedback during medical scenarios.

Overall we aim to deepen our understanding of disease development in order to generate a significant impact through translating ideas into clinical reality.

Publications

Pillar N, Haguel D, Grad M, Shapira G, Yoffe L, Shomron N. Characterization of microRNA and

Amarilyo G, Pillar N, Ben-Zvi I, Weissglas-Volkov D, Zalcman J, Harel L, Livneh A, **Shomron N.** Analysis

Reviews

Grants
2018-2019 Breakthrough Award
2018-2020 Zimin Deep Learning and Engineering Grant
2018-2020 Israeli Ministry of Defense
2018-2021 Adelis Foundation
2017-2020 Foundation Fighting Blindness and Israeli Ministry of Health
2016-2021 Israel Science Foundation
2020-2021 IMOD Mafat
2020-2024 Israel Precision Medicine Partnership Program (IPMP), with the Israel Science Foundation
Paralinguistic Communication, Phonetics and Psychoacoustics

Positions
Senior Lecturer, Sackler Faculty of Medicine

Research
Our interests lie on the frontier between signal processing and human communication in both speech and music. One general field we have been involved in in recent years is the paralinguistic aspect of verbal communication. In this research my colleagues and I have been exploring two main directions:

1. **Emotion:** Production and perception of emotions in speech, mostly in Hebrew, along with several excursions into cross lingual studies – Hebrew/German and Hebrew/Arabic. I’ve been looking at emotions as expressed in many different settings: films, event recollection, interviews, psychotherapy, and acted with conflicting textual and prosodic content.

2. **Pragmatics:** Production and perception of word stress (i.e. “I love my cat” vs. “I love my cat”), in Hebrew and Arabic, and lately also the manifestations of lexical stress in Hebrew.

Vowel spaces of Spoken Arabic in a Galilean Dialect (GD) and a “Muthallath Dialect” (MD) for men and women. External polygons are long vowels, internal polygons are short vowels. Note that short vowels are more centralized, and exhibit larger differences between dialects.
We have also been interested in signal processing aspects of music and musical acoustics for a very long time. Recent works we have participated in have been related to vibrato in the singing voice: quantifying it and relating it to factors such as singer proficiency, vocal warmup and singing style. Situated in the heart of the Middle East, we have become interested in acoustic phonetics of Hebrew and Spoken Arabic. Along with our colleagues, we have studied Hebrew vowels in everyday, connected speech, and in several dialects of Spoken Arabic, which have been studied very little. For example, vowel spaces of a Galilean dialect and the Kfar Kassem dialect are presented in the figure below.

Finally, the perceptual aspects of the subjects above have led us to examine their interaction with psychoacoustic thresholds. Starting with frequency perception thresholds, and now branching into intensity and spectral thresholds, our collaborators and we have been looking at their correlation to perception of emotion and music.

Publications

Voice, Speaking Rate, Stuttering and Fluency Disorders

Positions
Associate Professor, Sackler Faculty of Medicine

Research
Our research, as well as our clinical interest, focuses on two major fields: Stuttering and Voice. In the area of stuttering and other fluency disorders, we are interested in identifying and measuring various fluency characteristics, providing normative data on speaking rate in Hebrew and exploring therapeutic approaches for stuttering, cluttering and other related fluency disorders. To this end, we are conducting studies on the perception of stuttering, and on the acoustic properties of speaking rate, normal disfluency and stuttering. In addition, we are currently collaborating with researchers in other research centers in a study that utilizes advanced methods for brain imaging related to stuttering and language.

In the area of voice, we are highly interested in characterizing vocal properties related to different physical, physiological and emotional conditions, and on the professional voice. This line of research involves exploring and identifying acoustic, aerodynamic, perceptual and acoustic measures that differentiate, for example, between people with and without laryngeal pathologies, people who experience various emotional or social conditions, and women at different hormonal conditions and phases (e.g., using birth-control pills, pregnancy, menstrual cycle, etc.).

Publications

Correct gender identification rates for boys and girls in the six age groups for (A) sentences and (B) vowels.

Chapters and reviews

Grants

2017-2021 Israel Science Foundation, Cerebral and cerebellar white matter pathways controlling Speech Rate
Dr. Daphne Ari-Even Roth, Ph.D.
Department of Communication Disorders
Steyer School of Health Professions
Sackler Faculty of Medicine

E-mail: rothdf@post.tau.ac.il

Learning and Plasticity and Early Detection of Hearing Loss – Clinical Implications

Positions
Senior Lecturer, Sackler Faculty of Medicine
Head, Department of Communication Disorders, Steyer School of Health Professions

Research
Our research focuses on two main fields:
(a) Learning and plasticity in the auditory system:
Our research goal focuses on investigating perceptual learning and plasticity in the auditory system throughout the life span. Our interest in this area is motivated by the constant need in clinical practice to seek for better understanding of the learning characteristics and limitations of brain plasticity in the auditory modality which will in turn contribute to the better development of habilitation strategies in a variety of populations with hearing difficulties. We conduct behavioral studies in adults and children (i.e. single and multi-session training) using both non-verbal and verbal stimuli in order to explore the different characteristics of skill learning in the auditory system such as the time course of learning, the role of sleep for the establishment of delayed gains in performance, the generalization of the learning gains to untrained conditions etc. In order to provide evidence for functional plasticity in the neural encoding of sounds in the auditory system following training, we are currently also utilizing electrophysiological measures. Specifically, we record auditory brainstem responses to speech stimuli which provide us with a unique opportunity to follow changes in the neural signatures of the acoustic properties of the input signal (e.g., pitch tracking, harmonics, onset timing etc) that occur before and following training. We plan to explore the learning characteristics and limitations of brain plasticity in the auditory modality in different populations (e.g. middle-aged, elderly adults, hearing impaired, auditory processing disorders etc.) using both behavioral and electrophysiological measures.
(b) Early detection of hearing loss in neonates and its clinical implications:
Our interest in this field is motivated by the growing evidence that early identification of hearing loss and intervention prior to six months of age can diminish the negative impact of hearing loss on speech and language acquisition. One line of research we conduct focuses on the prevalence and characteristics of hearing loss among different populations of infants such as infants with very low birth weight infants and congenital cytomegalovirus infection. Universal newborn hearing screening allows us not only identify special populations at risk for hearing loss but also, for the first time, to follow the developmental milestones of these children at a very young age and assess the communicative skills of infants with different types of hearing loss (e.g., unilateral hearing loss, mild hearing loss). These early communicative skills are known to be necessary to language and speech development. Thus, another line of research focuses on the effects of different degrees of hearing loss (e.g., unilateral hearing loss) on early auditory and pre-lexical productions. Learning the consequences of early detection and as a result early intervention provides insights to the ability to reverse the negative influence of auditory deprivation due to brain plasticity in young children.

Publications

Dr. Katy Borodkin, Ph.D.
Department of Communication Disorders
School of Health Professions
Sackler Faculty of Medicine

Language Processing in Healthy and Brain Damaged Bilingual Speakers

Position
Lecturer, Sackler Faculty of Medicine

Research
Many individuals in the contemporary society are required to use more than one language in everyday life. Research in our laboratory focuses on these speakers and explores how they process their languages. We apply behavioral and neuroimaging methods (fMRI and tDCS), both in healthy adults and in individuals with a language disorder following brain damage, such as aphasia. Current projects in the lab address the following questions:

1. What determines the differences among individuals in how successful they are in learning a second language? In one project, we look at the role of semantic processing and cognitive flexibility in vocabulary learning. In another, we study the interplay between auditory and motor systems in predicting the ability to acquire a foreign language pronunciation.

2. How using a language (to speak, listen, write or read) is different in native vs non-native language?

Organization of lexical networks in non-native language (Hebrew, left panels) and native language (English, right panels). Upper panels show the full network and the lower panels – the node pumpkin and its direct neighbors. The figures and the accompanying analyses suggest that non-native words are more densely connected to their neighbors and tend less to group into communities compared to native language words.
The conditions under which second language acquisition occurs are often less than ideal; for instance, second language is often acquired at an older age and used less frequently than the native language. In our lab, we have been investigating how these acquisition circumstances may affect the organization of lexical-semantic knowledge and the processing of words by the left and the right cerebral hemispheres.

3. What are the patterns and the mechanisms of language impairment and language recovery in bilingual and multilingual speakers? Some bilinguals with aphasia regain control of both languages in parallel, while in others language recovery is non-parallel (e.g., one language may be more impaired than the other, despite comparable premorbid proficiency). Our research aims at elucidating the factors predicting recovery patterns in these speakers and examines the cross-language effects of treatment on communicative abilities. We also study the interplay between neurobiological factors (such as the specific localization of the brain insult) and environmental factors (such as language proficiency) in determining spontaneous and treatment-induced neuroplasticity and its relevance to communicative abilities.

The research conducted in our laboratory can advance the current understanding of processes related to adult language learning, representation, processing, and breakdown.

Publications

Auditory Neuroscience and Hearing Rehabilitation

Positions

Associate Professor, Department of Communication Disorders, Sackler Faculty of Medicine

Head, Hearing, Speech, and Language Center, Sheba Medical Center, Tel Hashomer

Co-Director- Cochlear Implant Program. Sheba Medical Center, Tel Hashomer

Research

Within the fields of auditory neuroscience, audiology, and hearing rehabilitation research focuses on cortical biomarkers of auditory processing in the normal and impaired auditory system. Of special interest are the effects of bilateral and unilateral auditory deprivation habilitated by cochlear implants (CI) and hearing aids (HA) on brain electrical activity during auditory processing. Over the years we developed complex linguistic tasks that exposed atypical auditory processing strategies as a result of hearing loss, auditory processing disorders, and increasing age. We provided evidence for cortical binaural processing markers, reflecting integration of linguistic information provided to the two ears in normal hearing listeners. Currently, the effect of increasing age on binaural processing is under study, showing that already in middle aged listeners

Grand average waveforms of normal hearing children elicited during a speech discrimination task presented monaurally and binaurally. Shown are the sum of monaural right and left waveforms, the binaural response, and the difference waveform (Binaural interaction component=Sum of right+left – binaural response). Also shown are sLORETA images indicating the major site of activation during P3-BIC in the inferior and medial frontal gyri, (BA 11, 25) and orbital gyrus (BA 47) bilaterally.
binaural processing is less efficient. Altered binaural markers were found in children with CI, HA, and a combination of a CI in one ear and a HA in the other, shedding light on the neural mechanisms that underlie impaired sound localization and speech understanding in noise in these children. Another line of research focuses on the effect of increasing age and cochlear implantation on auditory-cognitive processing.

Continuous clinical experience in audiology and hearing rehabilitation have set the ground for clinical research on the use of objective measures for diagnosing auditory processing deficits in children with autism, selective mutism, (central) auditory processing disorders, and for evaluating hearing outcomes in patients with CI and HA. A main interest is to transform research findings into rehabilitative approaches and technologies for auditory disorders.

Additional lines of research incorporate neurophysiologic and behavioral measures for studying: (1) The effect of auditory processing disorders (APD) on perceptual and post-perceptual stages of linguistic processing; and (2) The involvement of the peripheral and central auditory system in selective mutism and autism.

Understanding normal and impaired auditory processing contributes to the formation of rehabilitative technologies and approaches for auditory disorders.

Publications

Grants

Hearing Science and Clinical Audiology

Position
Professor Emeritus, Sackler Faculty of Medicine

Research
• Normal and abnormal auditory function
• Brain plasticity in cochlear Implants, Auditory Processing Disorders (APD)
• Clinical Audiology

Our research has been conducted in two areas:
A. Study of inner ear function in guinea pigs under three conditions: hypoxia, acoustic over-stimulation and differentiation. The study of these subjects has required the development of three special experimental techniques:
 • A method of chronic implantation of an electrode into the facial nerve canal to enable longitudinal follow-up of hearing function in the awake state.
 • A rheological model, which was developed for research on cochlear hypoxia in guinea pigs.
 • A surgical method to completely eliminate the auditory efferent innervation to the cochlea while ensuring the animal’s full recovery from this procedure. Thus it is possible to study the hearing function over time without the influence of the efferent system with the guinea pigs in an awake state.

B. Research on auditory plasticity in human subjects
The cochlear implant is a rehabilitative alternative in which an electrode inserted into the inner ear, directly stimulates the auditory nerve. Research is conducted in the area of programming the implant and speech perception using the implant. The research deals with the plasticity of the auditory system in acquisition of hearing and language skills and contributes basic theoretical and clinical knowledge about the importance of the auditory feedback to normal speech and hearing development and function.

Hearing in neonates and Auditory Processing Disorders: The Transient Evoked Oto-Acoustic Emission (TEOAE) is applied in hearing screening in neonates. Research was conducted to examine the reliability and validity of the test. We also investigated the development and activity of the efferent inhibitory system in newborns and premature babies using the suppression of the TEOAE test. We suggested the use of the test as a clinical tool for evaluation of auditory brain-stem function in neonates. We postulate that central auditory processing disorders (CAPD) manifested later in life can already be detected at this early stage of life using this method. We plan to continue to investigate the development of the efferent system and its importance for hearing throughout the life span, from childhood to old age, under difficult listening conditions and in subjects with communication disorders.

Publications

‘Bottom-Up’ and ‘Top-Down’ Processes in Human Auditory Perception and Recognition

Position
Professor, Sackler Faculty of Medicine
Head, Steyer School of Health Professions

Research
Our research focuses on understanding the influence and relative contribution of sensory information (“bottom-up” processes) compared to cognitive capabilities and listening experience (“top-down” processes) on the perception of speech and language development. We test our hypotheses in a range of special populations including hearing-impaired infants, children and adults with cochlear implants and/or hearing aids, children on the autistic spectrum, bilingual and trilingual children and adults and middle-aged and elderly adults. We always compare performance with the typically developing population. We develop tests that are aimed to assess different levels of sensory, linguistic and cognitive processing. These include psychoacoustic tests of frequency, temporal and intensity resolution that involve non-speech auditory stimuli, linguistic tests that involve phonetic, word, and sentence material in optimal and degraded or difficult listening conditions (e.g. background noise, time-compressed speech, multitalker, multi-accented) and cognitive tasks, such as, selective auditory attention using auditory adaptation of the ‘stroop’ task for attending relevant and irrelevant information (e.g. lexical-emotional stroop). In order to understand the influence of repeated exposure to auditory stimuli on performance, we train our subjects in single- or in multiple sessions thus providing us with insights to the auditory memory systems. We use different training tasks that involve the implicit and explicit memory systems that are assumed to be analogous to language learning in infants and in older children. We utilize primarily behavioral measures that are occasionally supplemented with electrophysiological measures. Our studies are conducted in an infant speech perception/language lab which is unique of its kind in the country and is equipped to test different infant populations with behavioral techniques, and in an acoustically treated state-of-the-art psychoacoustic lab. Understanding the factors that influence speech perception throughout the life span have important implications in the design of aural rehabilitation for the hearing impaired and intervention protocols in populations with developmental delays.

Publications
O. Segal, S. Heila, L. Kishon-Rabin. The effect of listening experience on the discrimination of /ba/ and
Sackler Faculty of Medicine Research 2020

Review

Chapters in Books

<table>
<thead>
<tr>
<th>Grants</th>
<th>2018-2019</th>
<th>Ministry of Health: Implicit auditory learning in children with cochlear implants compared to normal hearing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2019-2022</td>
<td>Israel Science Foundation (ISF): The effect of hearing loss on dyadic and triadic interaction and word learning of hearing (with Osnat Segal)</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>Sima Lior Research Award: Audio-visual synchrony perception in prelingual hearing impaired with cochlear implants compared to normal hearing: A combined behavioral and fNIRS study</td>
</tr>
</tbody>
</table>
Speech and Hearing Sciences and Rehabilitative Audiology

Position
Professor, Sackler Faculty of Medicine and School of Education
Dean of Students, Tel Aviv University

Research
- Speech perception and production by the hearing impaired
- The implications of hearing loss on communication, cognitive and socio-emotional functioning in school, in the family and in general
- Educational Audiology
- Auditory rehabilitation of people with hearing loss

Our research focus is on evaluating the hearing and communication profile of individuals with a hearing loss and understanding the relationship between these functions and their functional management in various life environments. This research analysis expands the knowledge and understanding of theoretical models that examine the functioning of the individual with a hearing loss and constitutes a scientific basis for the development of intervention programs suited to the hearing and communication profile.

Our research activities focus on two main areas:

1. Research in the field of speech perception and communication through spoken language of individuals with a hearing loss.

 We focus on the perception of suprasegmental and paralinguistic features of the spoken message. These provide information on the communication intentions of the speaker (e.g. asking a question in comparison to stating a fact) as well as the speaker's emotional state.

2. Research of the ramifications of a hearing loss and communication difficulties on the individual’s ability to function in various life environments:

- educational system, home and work environment, as well as the ramifications of the hearing loss and the communication difficulties on the people in the individual’s environment.

 Our research focuses on the relationship between hearing loss and communication function through the use of spoken language in general and the speech intelligibility in particular.

 With the current trend to integrate children with a hearing loss into regular educational frameworks either individually or in a group, we also investigate the effect of hearing loss on the pupil's ability to function within these frameworks. This research is carried out in different sectors of the population (Jewish (secular & orthodox) and Arab), and on a range of age groups.

 Within the framework of the research examining the implications of hearing loss on the different aspects of a child’s life, we investigate not only the individual’s functioning but also those aspects that relate to the people in their environment such as their parents, siblings and teachers.

Publications

Books

Chapters

Zaidman –Zait, A., & Most, T. Assessment of Pragmatic Abilities among Deaf and Hard of Hearing Learners in Relation to Social Skills. In Marc Marschark & Harry Knoors (eds.): *Evidence-Based Practice in Deaf Education*. Oxford University Press. Accepted for publication 20.6.17
Prof. Chava Muchnik, Ph.D.
Department of Communication Disorders
Steyer School of Health Professions
Sackler Faculty of Medicine

Hearing Science and Clinical Audiology

Position
Professor Emeritus, Sackler Faculty of Medicine
Chair, Department of Communication Disorders, Tel Aviv University
Senior Audiologist, Speech and Hearing Center, Sheba Medical Center

Research
One of our main research areas is related to the effect of noise on speech perception, in young, middle aged and elderly populations. A major complaint of hearing impaired and normal hearing adults is the difficulty to understand speech in the presence of noise. Our attempt to address this challenging problem encompasses several aspects:

a. Improving the signal to noise ratio in sensory aids (hearing aids and cochlear implants). Recently we demonstrated a significant beneficial effect of a single channel Cochlear-based Noise Reduction Algorithm (CNRA) in hearing aids users and cochlear implants recipients. Further investigation is required for improving CNRA performance at lower SNRs and in different noise spectra.

b. Investigating the influence of aging on the recognition of speech in background noise: Aging is known to induce physio-pathological changes in the entire auditory pathways. While there is a comprehensive documentation of this difficulty amongst elderly people aged 65 years and above, limited information is available on middle-aged listeners.

Another topic in our research is the estimation of the potential risk for hearing loss as a result of listening to music with Personal Listening Devices (PLDs). We are studying the function of the efferent auditory system in normal and pathological populations such as children and adults with Auditory Processing Disorders and Childhood Selective Mutism.

Cochlear Implants are another area of research interest. In particular we are studying the characteristic features of the electrical nerve response in cochlear implant recipients.

Publications

Language Acquisition and Development of Linguistic Literacy

Position
Professor, School of Education and Sackler Faculty of Medicine
Vice-President, International Association for the Study of Child Language
Member, Academie Europea

Research
We study the ways Israeli infants, toddlers, children and adolescents acquire the structures, meanings and functions of spoken and written Hebrew (and Arabic). Empirical and theoretical exploration of linguistic phenomena are conducted against general models of language and cognitive acquisition, on the one hand, and the typological properties and constraints of Hebrew (and Semitic) verbal expression, on the other. Human development is taken as the critical context within which native language learning can take place in children. Specific areas of current investigation are (inter alia) acquisition of Hebrew verb structure (root and binyan) and semantics in mother-child dyads, children’s peer talk and children’s storybooks; linguistic input (maternal talk) to children and the relationship to their development in different socio-economic contexts; the emergence of syntactic constructions in children’s development language; prepositions and prepositional phrases in spoken and written Hebrew development; the development of written text production abilities across the school years; narrative acquisition and narrative theory; morpho-syntactic constructions in learning to spell Hebrew.

Publications

Grants
2017-2021 Research grant, Israel Science Foundation
Three colors pseudorabies virus plaque – Oren Kobiler.
Computational Study of the Human Microbiome

Positions

- Associate Professor, Sackler Faculty of Medicine
- Associate Professor, Blavatnik School of Computer Science
- External Professor, Santa Fe Institute
- Associate Editor, *PLOS Computational Biology*
- Editorial Board, *Microbiome*

Research

The human microbiome – the complex ensemble of microorganisms that populate the human body – has a tremendous impact on our health. Worldwide research initiatives and recent advances in high-throughput technologies have provided exciting insights into the previously uncharted composition of the microbiome and revealed marked compositional changes associated with a wide range of diseases.

To date, however, a system-level understanding of the human microbiome and of its impact on the host is still lacking.

To address this challenge, we develop a variety of novel computational methods for studying the human microbiome, analyzing multi-omic microbiome data, and informing microbiome-based therapy. Our research combines multiple computational approaches, including systems biology, metabolic and genomic modeling, metagenomic analysis, machine learning, data science, and complex networks theory. We specifically aim to go beyond simple comparative microbiome analyses and to study the microbiome as a complex ecosystem. This systems-level approach is crucial to resolving fundamental questions concerning the human microbiome and its role in human health, with numerous biomedical applications.

Research in the lab is multidisciplinary in nature and spans several levels of abstraction, ranging from state-of-the-art computational methods for analyzing microbiome metagenomic data to theoretical studies of mathematical and computational models.

Specific research topics include:

- Metagenomic systems biology and computational modeling of the human microbiome.
- Computational methods for multi-omic analysis of microbiome-derived data.
- Computational design of microbiome manipulation and microbiome-based therapy.
- Application of machine learning and data science to microbiome research.
- Model-based study of the relationship between the gut microbiome and the host diet.
- Species interaction, community structure, and assembly rules of microbial communities.
- Computational metagenomics and analysis of taxonomic and functional variation across health and disease.

Publications

Eng A, Borenstein E. Microbial community design: methods, applications, and opportunities, Current Opinion in Biotechnology, 2019.

Reviews

Grants

2013-2019 NIAID/NIH: Impact of the vaginal microbiome on Chlamydia trachomatis acquisition (with Balkus)

2017-2021 NIH/NIGMS: Metabolic model-based integrative study of the relationship between the gut microbiome, metabolome, and diet

2018-2023 NIH/NIA: The Dog Aging Project: Genetic and Environmental Determinants of Healthy Aging in Companion Dogs (with D Promislow, M Kaeberlein, UW)

2016-2021 NIH/NIOSH: The Healthy Diary Worker Study (with RA Fenske, UW)

2015-2019 NIH/NIDDK: The relationship of fecal microbiomes and nutritional status in CF (with L Hoffman, UW)
Human Antibody Responses in Health and Disease

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
Antibodies are major players of the immune system and are the basis of most vaccines. Despite their important role, the mechanism by which they contribute to protection during disease, and how to elicit them, remains a mystery.

Each one of us possesses a diverse repertoire of naïve B cells, expressing one type of membrane antibody on each cell. This diversity allows us to respond to a variety of different invaders. When a naïve B cell encounters an antigen, it migrates to the secondary lymph organs, where it interacts with other cells of the immune system. There, B cells undergo affinity maturation, which is one of the most remarkable phenomena in nature. During affinity maturation, somatic mutations are introduced in antibody genes, and subsequently both antibody strength and affinity are improved, while weak and autoimmune antibodies are deleted. B cells then differentiate into antibody-secreting plasma cells and long-lived memory B cells.

We use molecular immunology and genetics, combined with innovative single cell methods, to isolate high-affinity disease-specific antibodies from memory B cells of infected patients. The ultimate goal of our lab is to study pathogen:host interactions, as well discover novel antibody-based drugs and vaccines.

ANTI-PATHOGEN ANTIBODY PURIFICATION FROM PATIENTS. (A) Whole blood will be collected from infected patients. (B) B cells are enriched and (C) stained with pathogen-specific antigens-baits. The positive cells are single cell sorted. (D) The heavy and light chain genes of the sorted cells will be amplified by PCR and the sequences analyzed for clonalty. (E) Antibodies that are part of expanded clones of antigen-specific B cells are cloned into expression vectors and produced recombinantly. (F) The antibodies are used in a variety of downstream applications.
Publications

Grants

2020-2021 Campbell Foundation
Genetic Bases of Host Response to Infections and Chronic Diseases

Research
The research in my laboratory is focused on understanding the genetic bases of host response to infections and chronic diseases, which are important for human health. My team uses mouse model for speeding up the process of identifying such genes, which may involved of making some people resistant to a diseases while others are not. After finding the genes in mouse, it will be possible to identify the homologous genes in human. The product of our research can be used in developing new prevention and treatment tools for these diseases.

The main ongoing research projects at his lab are:
- Identifying and characterizing genes involved in host response to bacterial infection by Klebsiella Peumonia.
- Identifying and characterizing genes involved in host response to fungal infection by Aspergillus Fumigatus (Aspergillosis)
- Identifying and characterizing genes involved in host response to bacterial that causes dental infection (periodontitis)
- Identifying and characterizing genes involved in development of type-2 diabetes (T2D) in humans as a result of obesity and high fat-diet.
- Identifying and characterizing genes involved in host immune response to infectious and chronic diseases.
- Identifying and characterizing genes involved in development of colon cancer.

Publications
impaired glucose tolerance comorbidity after high-fat diet consumption. J Periodontol. 88:e150-e158.

Review and editorials

Grants

2016-2020 United States-Israel Binational Science Foundation (BSF)

2018-2020 German-Israel Foundation Grant (GIF)
Investigating Viral Genetic Diversity

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
Our research is focused on understanding how viruses generate and maintain genetic diversity. All virus populations display high genomic diversity, which provides opportunities for survival in the constantly changing environment. In many cases, such diversity results in failure of antiviral treatment (resistance to vaccines and antiviral drugs) and the emergence of zoonotic viral pathogens. DNA viruses and segmented RNA viruses exploit recombination and reassortment as mechanisms for diversity creation. We are interested in the mechanisms allowing DNA viral recombination and finding ways to inhibit these mechanisms.

Publications

Grants
2014-2019 Grant, Israel Science Foundation (ISF)
2014-2019 Equipment Grant, Israel Science Foundation (ISF)
2016-2020 BSF, co-PI Dr. Weitzman Matthew

A. Spread of three alpha herpesviruses (each expressing a different XFP) from a single infected cell suggests that only a limited number of viral genomes are able to be expressed and replicated inside a single cell. B. Replication compartments in a single nucleus infected with two alphaherpesviruses suggest that genomes remain in separate territories in the nucleus.
Human Mold Infections

Positions
Associate Professor, Sackler Faculty of Medicine
Chair, M.Sc. Committee, Sackler School of Medicine
Director, Ella Kodesz Institute of Host Defense against Infectious Diseases

Research
Aspergillus fumigatus is the most common mold pathogen of human beings, causing invasive diseases in immunocompromised (cancer after chemotherapy, bone marrow transplant etc) patients. Poor diagnostic tools and the ineffectiveness of antifungal drugs against established Aspergillus infections combine to result in high mortality following A. fumigatus infection. Left untreated, mortality rates from invasive pulmonary aspergillosis (IPA) exceed 90% and even following aggressive antifungal treatment fatality rates of 50-70% are common.

The goals of my lab are:
To understand what enables this mold to be such an effective and dangerous pathogen of immunocompromised patients
To develop novel modes of treatment including new antifungal compounds, targeted antibodies and nano medicines.

Publications

Grants
2018-2022 Israel Science Foundation Network ‘Moked’
2018-2020 China-Israel Grant
Host-Virus Interactions in Bacterial Systems

Position
Professor, Sackler Faculty of Medicine

Research
Our laboratory studies basic aspects of bacteriophage growth with emphasis on phage interactions with their bacterial hosts, and particularly, the recently identified bacterial defense system, the CRISPR. Our ultimate objective is to identify novel phage products and strategies that will assist in overcoming drug resistant pathogens.

We combine genetic and biochemical approaches to identify and characterize interactions of phage proteins with other phage or host proteins. Specifically, we employ the T7 phage and its Escherichia coli host as models. We use high throughput screening systems, transposon mutagenesis, tandem affinity purification, mass spectrometry, and classical as well as modern bacterial genetic methods to identify and characterize these viral-host interactions.

Publications

Reviews

Grants

2014-2019 Israel Science Foundation Grant
2019-2022 European Research Council Consolidator Grant
Dr. Dor Salomon, Ph.D.
Department of Clinical Microbiology and Immunology
Sackler Faculty of Medicine

Bacterial Protein Secretion Systems and Toxins

Positions
Senior Lecturer, Sackler Faculty of Medicine

Research
Our lab is interested in the recently discovered Type VI Secretion Systems (T6SSs) and the toxins they deliver. We are pursuing discovery-driven research and translational approaches to utilize the T6SS and its toxins as platforms for the development of novel antibacterial treatments.

The T6SS is a contact-dependent protein delivery system that is found in many Gram-negative bacteria. It uses a contractile apparatus to propel an inner-tube, which is decorated with toxic effector proteins, outside of the bacterial cell and into an adjacent recipient cell, where effectors are deployed. The T6SS is unique as it can deliver toxins directly into eukaryotic host cells as well as into competing bacterial cells, and thus mediates both virulence and antibacterial toxicities.

We employ a multi-disciplinary approach to identify T6SSs activities and toxins in various bacterial pathogens. Using molecular biology, genetics, microbiology, biochemistry, microscopy, proteomics, and bioinformatic tools, we are identifying novel virulent and antibacterial toxins and determine their mechanism of action and their targets. In addition, we study T6SSs in pathogenic bacteria and determine their contribution to pathogenicity, inter-bacterial competition, and dissemination in the environment.

Publications

Type VI secretion systems (T6SSs) deliver effectors mediating antibacterial and virulence toxic activities. (A) A scheme of the T6SS. (B) Bacterial attackers (blue) using a T6SS with nuclease effectors to kill prey bacteria (green). (C) Bacteria (green) using a T6SS to allow survival and replication within a macrophage (red=actin cytoskeleton, blue = DNA).
Communications, accepted for publication. # Co-corresponding authors

Dar Y, Salomon D, Bosis E. The antibacterial and anti-eukaryotic Type VI secretion system MIX-effector repertoire in Vibrionaceae. Mar Drugs. 2018;16(11).

Grants
2016-2019 Alon Fellowship
2017-2022 European Research Council (ERC) Starting Grant
2017-2021 Israeli Science Foundation (ISF) Grant
2020-2022 Recanati Foundation Grant
Investigating the Pathogenesis of Candidiasis, Epidemiology of Dermatophytosis and Experimental Antifungal Drugs

Positions
Professor (Emeritus), Sackler Faculty of Medicine
President, Israel Society of Medical Mycology (ISMM)
Board Member (Treasurer), European Confederation of Medical Mycology (ECMM)
FECMM, Fellow of ECMM
Honorary Member of International Society of Human and Animal Mycology (ISHAM)

Research
We focus on studying phenotypic and genotypic characteristics of clinical Candida albicans strains from systemic and mucosal candidiasis in vitro and in vivo in experimental animal models, mice and Galleria mellonella.

We developed experimental antifungal drugs: the polyenes Amphotericin B (AMB) and Nystatin (NYT) associated with Intralipid (IL): AMB-IL and NYT-IL. Currently we assess susceptibility of the C. albicans clinical strains to AMB-IL and NYT-IL.

We investigate the epidemiology of dermatophytooses in Israel, in the general population and in the military.

Publications
Segal E, Frenkel M. Dermatophyte infections in environmental contexts. Res. Microbiol. 2015; 166:564-9

Confocal microscopy of C. albicans strains adhering to HACAT cells showing strongly adherent strain from Candida bloodstream infection and weakly adherent strain from vaginal infection.

Grants
2018-2019 Maratier Fund
Viral Host Interactions of RNA Viruses

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
Our long-term goal is identification and characterization of the interactions of viruses with their host cells. Our current model systems include Ebola virus, Dengue virus and Hepatitis C and D viruses.

Current projects in the lab include:
1. Development of systems for the identification and characterization of new interactions between viral and host cell proteins.
2. Using live cell imaging techniques to study viral-host interactions.
4. Drug resistance to viral hepatitis-induced Hepatocellular carcinoma

Publications

A live hepatoma cell (Huh7) expressing the viral non-structural protein 5A that localizes to the endoplasmic reticulum and lipid droplets.

A mast cell showing the microtubule network (green), actin (red) and secretory granules (blue) – Ofir Klein, Ronit Sagi-Eisenberg.
Protein interaction studies and discovery of new therapeutics for specific immune modulation

Positions
Senior Lecturer, Sackler Faculty of Medicine

Research
Our laboratory is focused on the discovery and development of novel protein modulators as the basis for new therapeutics. Of main interest are the challenging targets belonging to the biological space of protein-protein interactions (PPIs). To study and discover new modulators, we are integrating cutting-edge computational, biophysical and cellular biology tools. We are specifically interested in the interaction of calcineurin-NFAT proteins known as **T-cell activation switch** and in immune checkpoint receptors that function as the **T-cell inhibition switch**. In addition, we are developing new optimized proteins as biomarkers and therapeutics for various cancer types.

Publications
Dotan N, Gayder V, Bloch I, **Gal M**. An ELISA for the study of calcineurin-NFAT unstructured region interaction. Anal Biochem. 2018
Ratzon E, Bloch I, Nicola M, Cohen E, Ruimi N, Dotan N, Landau M, **Gal M**. A Small Molecule Inhibitor of

Development of discovery “engine” – an efficient and innovative technological platform to study molecular recognition for the study and discovery of new bio-active molecules.
Bruton’s Tyrosine Kinase Involved in B-Cell Signaling. ACS Omega. 2017

Patent
Dr. Asaf Madi, Ph.D.
Department of Pathology
Sackler Faculty of Medicine

Systems Immunology

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
The main interest of the lab is to study gene circuits of immune cells involving differentiation, activation and regulation following stimulation, immunotherapies or cell-cell interactions. We focus on exploring these cells and circuits mainly in the context of the tumor microenvironment. We apply cutting-edge technologies including mouse tumor models, molecular biology, single cell RNA-seq and other high-throughput genetic and genomic methods, combined with advanced computational approaches to identify and functionally characterize genes that play an important role in immune cell circuits and their effect on tumor growth. Using this approach will enable deep studies of immune cell signaling in the context of interaction with tumor-resident cell types and tumor microenvironment. Moreover, this approach could be readily adapted to study the effect of these genetic circuits in other settings, such as immune cells in organ-specific autoimmunity. These unique signaling signatures could become new ‘biomarkers’ and facilitate our understanding of both disease pathogenesis, diagnosis and treatment.

Induction and transcriptional regulation of a “co-inhibitory” gene module in T cells by IL-27. The IL-27-induced gene program overlaps with multiple signatures of T cell dysfunction and tolerance. a, Panels I–VI, t-SNE plots of the 588 CD8+ single-cell tumor infiltrating lymphocytes (dots) harvested from wild-type mice bearing B16F10 melanoma. b, Graphical representation of the overlap of 57 IL-27-induced cell-surface receptors or cytokine genes with genes expressed in different states of T cell non-responsiveness. This work identified a critical molecular circuit that underlies the co-expression of co-inhibitory receptors in T cells and allowed the identification of novel regulators of T cell function that can be targeted to regulate autoimmunity and anti-tumor immunity.

Publications

Wu C, Chen Z, Xiao S, Thalhamer T, Madi A, Han T, Kuchroo VK: SGK1 governs the reciprocal...

Regulatory Mechanisms in Mucosal Inflammation

Position
Professor, Sackler Faculty of Medicine
Associate Editor, Journal of Allergy and Clinical Immunology

Research
The gastrointestinal, respiratory and urogenital tracts are primary entry points of numerous pathogens and antigens. Therefore, complex immunological mechanisms evolved to efficiently and potently respond to such antigens. Notably, exaggerated immune responses such as those observed in asthma and inflammatory bowel disease are often harmful and may lead to substantial morbidity.

Our goal is to identify immunological mechanisms that can be pharmacologically targeted in diseases affecting the lung and gastrointestinal tract. We are specifically interested in defining the roles of immune inhibitory receptors in these mucosal sites. To achieve this goal we use a combination of novel in-vivo (unique gene targeted mice) and in-vitro approaches combining genomics, proteomics, molecular biology and biochemistry.

Publications

Shlomovitz I, Erlich Z, Speir M, Zargarian S, Baram N, Engler M, Edry-Botzer L, Munitz A, Croker BA, Gerlic M. Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model.

Reviews

Grants

2015-2020 The Israel Science Foundation Individual Research grant #95/11; Title: Regulation of GI eosinophils by CLM-1
Cell Death and Immune Response: the Role of Necroptosis and Pyroptosis in Inflammation

Position
Associate Professor, Sackler Faculty of Medicine

Research
Cell death, an essential cellular process, facilitates the removal of damaged or infected cells, and is necessary for the resolution of immune responses. Recently, two new forms of cell death were identified: 1) pyroptosis - a caspase-1 dependent cell death, and; 2) necroptosis, a RIPK3/MLKL-dependent caspase independent cell death. The latter was suggested to eliminate infected cells when apoptosis is suppressed. Although world-renowned scientists have studied these two non-apoptotic cell deaths for the last 15 years, numerous fundamental questions regarding their components and activity have yet to be answered. Thus, our lab focuses on learning the mechanisms of necroptosis and pyroptosis to ultimately harness this knowledge to fight cancer and improve the health of infectious and inflammatory diseases patients.

Today our laboratory focuses mainly on four projects:
1. Investigate the mechanisms of the non-apoptotic cell death, necroptosis and pyroptosis.
2. Study the immunological consequences of necroptosis and pyroptosis during allergic and inflammatory disease in the skin, lung, liver and intestinal.
3. Study the role of necroptosis and pyroptosis during infectious diseases.
4. Develop cancer immunotherapy based on non-apoptotic cell death.

Publications

a. Extracellular vesicle release during necroptosis as seen using Imagestream.
b. Morphology changes and outer-membrane breaks during necroptosis as seen under Electron Microscopy.
c. Inhibiting necroptosis in IL-33-dependent allergic airway inflammation – anti-necroptosis treated (left) vs untreated (right) lung.

Reviews
Molecular Basis of Allergic Diseases: Genomic and Functional Analyses

Positions
Professor, Sackler Faculty of Medicine
Chair, Department of Cell and Developmental Biology
Director, Biomed@TAU Research Hub, Membrane Communication & Remodeling

Research
Our primary interest is the molecular basis of allergic and allergy related diseases, including skin allergy and asthma. Specifically, we explore the mechanisms underlying release of allergic (i.e. histamine) and inflammatory (i.e. cytokines) mediators from activated mast cells. Our research focuses on deciphering the signaling networks that link mast cell activation with mediator release and characterization of genes that could serve as cellular targets for the future development of anti allergic and asthma drugs. To this end, we combine functional genomics and phenotype driven screens of mast cells, activated by multiple stimuli, in order to recapitulate human pathophysiologic conditions. Research methods used include confocal microscopy in live and fixed cells; gene cloning; quantitative RT-PCR, pull down-assay; mass spectrometry, and bioinformatics.

Current projects in the lab include:
1. Revealing the secrets of mast cell secretion.
2. Mast cells and cancer – the good, the bad and the ugly.
3. Decoding the Rab networks that control mast cell function.

Cell imaging of mast cells (RBL-2H3 mast cell line), which were co-transfected with NPY-mRFP (red), as reporter for the secretory granules, and GFP-tagged wild type (A) or active mutant (B) of the small GTPase Rab5A (green) reveals a dramatic effect of this Rab active mutant on the secretory granules size.
Publications

Gorzalczany, Y., Akiva E, Klein, O., Merimsky, O., and Sagi-Eisenberg, R. Mast cells are directly activated by contact with cancer cells by a mechanism involving autocrine formation of adenosine and autocrine/paracrine signaling of the adenosine A3 receptor. *Cancer Lett.* 2017; 397, 23-32.

Reviews

Grants

2015-2019 The Israel Science Foundation
The role of the small GTPase Rab12 in mast cell degranulation and trafficking of the secretory granules

2018-2022 Binational Science Foundation
Elucidating the roles of the small GTPase Rab5 in regulating mast cell secretory granule biogenesis and compound exocytosis
Bioethics, Health Law and Medical Humanities

Positions
Senior Lecturer, Sackler Faculty of Medicine
Executive Vice President, World Association for Medical Law – WAML

Research
Our research focuses on ethical and legal aspects of biomedicine and health professions. Some studies are based on a normative-polemical analysis, while others use quantitative research methods or mixed methods. A large portion of this work is done in collaboration with professionals and researchers from different disciplines.

Our multicultural society and the interprofessional nature of current clinical practice, along with the developments in biomedical research, treatment methods and technology are all a setting for our bioethical deliberation and research. We are particularly interested in the ethical and legal implications of psychiatric and neurological conditions that influence one’s thoughts, feelings and behaviours. The legal concept of competence which we focus on in our research brings to the fore some of the shortcomings of current medicine in realms where spirituality, philosophy and epistemology meet; the extent of respect for patients’ autonomy during periods of lesser cognitive function is the main ethical focal point in this regard.

The empirical bioethics branch of our research focuses on thoughts, intentions and/or actual behaviors of health care professionals regarding activities of bioethical relevance, such as clinical research or interaction of professionals with the media. While some view normative bioethics to be the main or the only real bioethics research; we believe that combining both approaches provides a better basis for decision making and policy adaptation, as the empirical informs and influences the normative discussion.

Our primary research and teaching topics:
- Clinical research ethics
- Ethical and legal aspects of mental health and brain science
- Ethical and legal aspects of nursing and nursing education
- Public discourse on health issues, ethics and law
- Islamic law and bioethics

Publications

Grants
2017-2019 The Israel National Institute for Health Policy Research
Bioethics, Biolaw and Medical Humanities

Position
Associate Professor, Sackler Faculty of Medicine

Research
The research area of our group is Medical Humanities, relying on theoretical methods with the occasional excursion to qualitative research.

My own personal interests encompass moral theory and the intersections among bioethics, social history and related normative domains, such as law and religion, especially Halakhah (Jewish religious law). I explore human rights law and international humanitarian law in the light of the contemporary ethical and meta-ethical discourse. Another aspect of my work aims at developing better understanding and tools of deliberation in bioethics as a psychomoral process and as socially constructed events of legitimization and education. I am intrigued by the incorporation of the history and philosophy of ideas such as conscience, responsibility, hope and doubt in clinical reality and medical education.

Another branch of research is the socio-historical and moral ideas in the representation of illness and medicine in Western visual art, since the late middle ages through contemporary and experimental art.

Ongoing research projects are:
1. Moral psychology and the notion of ethical expertise in medical education.
2. The history of karyotyping exams in questions of gender (e.g. gender verification in sport).
3. Ethics and law of military, humanitarian and disaster medicine.
4. The regulation of cloning in international law.
5. New born screening and the regulation of large, public-health data banks.
6. Human rights and international humanitarian law.

Our group’s chief aim is to integrate deep theoretical knowledge and creativity with applied problems, contextualizing their ethical dimensions historically and socially. Efforts are made in the direction of cross-disciplinary work, especially through participation in the activities of the new Edmund J. Safra Center for Ethics, Tel Aviv University.

Monographs
Barilan, YM. Jewish bioethics: rabbinic law and theology in their social and historical contexts. Cambridge University Press. 2017

Publications
Barilan YM. Rethinking the withholding / withdrawing distinction” the cultural construction of “life support” and the framing of end-of-life decisions”. Multidisciplinary Respiratory Medicine 2015; 10:10
Asman O and Barilan YM. The songs of the sirens and the wax in the ears: an autonomy-based tool for DBS device users. AJOB Neuroscience 2017; 8:120-122

Chapters

Dr. Ilana Dubovi, Ph.D.
Department of Nursing, Stanley Steyer School of Health Professions at the Faculty of Medicine.

Email: ilanadubovi@tauex.tau.ac.il

Educational Technology to Leverage Patients and Health-Care Practitioners Education

Positions
Lecturer, Sackler Faculty of Medicine

Research
The research area is a synergy of learning sciences, educational technology, and health-related sciences. In particular, we are interested in exploring how patients’ education, as well as health-care providers ongoing training, can be leveraged via novel and powerful educational technology.

Our primary research topics:
• We develop novel multi-media-based interactive computerized tools that support patients’ learning about and management of their own diseases and related medical treatments to improve health outcomes. We show that following learning with our computerized tools, patients with type 1 diabetes were able to improve their own blood glucose regulation. Now, we are seeking to design tools that support cancer patients and patients with chronic illnesses.
• Using intelligent multi-modal analytics technology, we are able to support health-care practionaires’ learning and training processes. We study how fine-tuned to learners needs educational technology improves health-care quality of care and patient safety.

Publications

Educational Technology. (a) Young patient with type 1 diabetes is learning with interactive educational models that simulate biochemical processes related to diabetes and its medical treatment/ (b) Study in progress, young patient with cancer learns to control side effects of chemotherapeutic treatments via learning with educational technology. (c) Nursing students practicing safety behaviours via immersive Virtual Reality simulation.

Grants

2015 – 2018 Ministry of Health, Chief Scientist
2019 - 2021 National League of Nursing Research Grant
2020 – 2021 Faculty of Medicine Collaborative Grant (with Dr Orit Karnieli-Miller, School of Medicine)
2020 - 2021 Joy Neuro-Welness Research Grant
Studying Doctor-Patient Relationships, Communication and Medical Professionalism

Positions
Associate Professor, Sackler Faculty of Medicine
Chair, Department of Medical Education
Board of Directors member, American Academy of Communication in Healthcare – AACH
Member, Research Committee, European Association of Communication in Healthcare (rEACH)
Member, Founding Committee, Society of Medical Education in Israel (Healer)

Research
Our primary research and teaching interests are focused on:

- Professionalism and humanism in medical schools. Understanding what students experience, how they interpret it and what we should do to help their development as humanistic professionals.
- Developing communication skills for handling and assessing multi-participant conversations (triadic communication) physician-patient-companion. Understanding how we should and could involve family members.
- Teaching medical students and professionals how to break bad news, including assessing how their personal difficulties and biases affect their communication.
- Enhancing medical students self-awareness (e.g., by using reflective diaries and narratives in medical education).
- Defining and applying Shared Decision Making in healthcare.

Publications

Zisman-Ilani, Y., Roe, D., Karnieli-Miller, O. (2015) Involving patients in decision making: understanding the past and planning the future. Quality in Medicine, 3, 10-12. 2015 (Hebrew)

Reviews

Grants and Chapters

2016–2020 Preventing burnout and enhancing professionalism in the surgical unit care and medical teams

2017–2019 Israel National Institute for Health Policy Research, Enhancing Patient Centered Care through Understanding Barriers and Promotors to Implementing Shared Decision Process in Diabetes (with Eddy Karnieli & Yaara Zisman-Ilani)

2017–2020 The Israel National Institute for Health Policy Research, Improving Patients’ Quality of Care through Enhancing Physicians’ Professionalism and Preventing Burnout in a Surgical Division (with Guy Lahat, Nathaniel Laor, Keren Michael, Daniel Hamiel)

2020–2021 Faculty of Medicine Collaborative Grant (with Dr Ilana Dubovi, School of Health Professions)
A dorsal root ganglion explant (green) cultured in a silicon compartmental chamber. Inset: neurotrophic p75 receptor (red), fluorescent-labeled rabies virus particles that internalize with this receptor (green/yellow) — Shani Gluska, Eran Perlson.
Investigating the Molecular Basis of Visual System Development

Positions
Professor, Sackler Faculty of Medicine
Committee Member, Israel Society of Developmental Biology

Research
We study the gene networks that transform the embryonic cells into a complex, differentiated organ. We focus on exploring this question by studying the process of eye development as a model for organogenesis. We apply cutting-edge technologies including mouse genetic tools (Cre/loxP), molecular biology, and microarray analysis to identify and functionally characterize genes that regulate the development of the eye in mammals. Understanding the normal developmental regulation of the different eye structures is essential for understanding visual disorders and designing treatments for ocular phenotypes including retinal degeneration, glaucoma and cataracts, all of which are leading causes of blindness.

Publications

Grants

2014-2019 Israel Science Foundation
Understanding the Cell Biology of Misfolded Proteins That Cause Neurological Disorders

Positions
Senior Lecturer, Sackler Faculty of Medicine
Faculty Member, Sagol School of Neuroscience
Director, Biomed@TAU Research Hub, Disorders of the Mind & Brain

Research
Our research utilizes state-of-the-art technologies to elucidate cellular mechanisms of neurological disorders. Some of these disorders progress late in life, such as Huntington’s disease and Parkinson’s disease. A common characteristic in these disorders is the accumulation of proteins that are not folded properly and can form aggregates in cells. Research in the lab is currently focused on the ubiquitin and autophagy pathways, the main routes by which aggregate-prone proteins are degraded. Also, these pathways are important for cells to cope with various stress conditions. We aim to elucidate novel regulatory pathways of protein homeostasis in cells to better understand the basis of these devastating diseases and to identify future therapeutic targets.

Publications
Reviews

Grants
2018-2019 FEBS Fellowship Follow-up Research Fund
2018-2021 Azrieli Foundation
2020-2025 Koret Foundation Global Collaboration on Neurodegenerative Disease Research
GSK-3 Signaling in Health and Disease

Position
Professor, Sackler Faculty of Medicine
Chair, Sackler Committee for Ph.D. Graduate Studies

Research
Our research is focused on the molecular mechanisms regulating the protein kinase GSK-3 and their implications in human disease. GSK-3 is a central player in diabetes, neurodegenerative and psychiatric disorders, and recently emerged as a promising drug discovery target. We propose that inhibition of GSK-3 should produce therapeutic benefits in treating these disorders. We develop selective substrate competitive GSK-3 inhibitors and evaluate their efficacy and therapeutic effects in relevant in vitro and in vivo systems. So far we could show that our leading compound inhibitors had therapeutic efficacy in CNS disorders models for Alzheimer’s disease, mood disorders, and multiple sclerosis.

In recent work we identified the lysosome as a GSK-3 target. This implicated GSK-3 as a key player in protein degradation pathways, particularly autophagy ad endocytosis. Research methods combine cell biology, molecular biology and biochemistry disciplines together with bioinformatics and computational biology.

Publications

Grants
2017-2020 Israel Science Foundation
2020-2025 Koret Foundation Global Collaboration on Neurodegenerative Disease Research

Treatment with GSK-3 inhibitor restores lysosomal activity, lysosomes shown as red dots (left). Computational model of GSK-3 inhibitor –L803-mts-binding with the substrate binding site (right).
Enhancing Motor Learning and Motor Control in Typically Developing and Clinical Populations

Positions
Senior Lecturer, Sackler Faculty of Medicine
Member, Sagol School of Neuroscience
Head, M.Sc. Program in Physical Therapy

Research
We study human movement in typical and clinical populations, with a focus on arm movements, grasping and finger movements. We are interested in fundamental questions such as how we learn to make new movements, how children develop motor skills during development, and how our motor function is affected by disorders such as Parkinson’s disease, stroke, dystonia or cerebral palsy. We also study the interconnection between decision making and human movements. Our approach is to construct models that describe movement and force generation by the hand and arm, considering the biomechanics of the hand and the neural processes leading up to making movements. This approach gives us insights into the strategies behind the complex movements and force coordination required to successfully perform grasping and manipulation, as well as a greater understanding of the causes of differences in performance in individuals with motor disorders. A goal of this research is to improve rehabilitation of hand function through improving our knowledge of these strategies.

Publications
J. Friedman and M. Korman. Observation of an expert model induces a skilled movement coordination pattern in a single session of intermittent practice. Scientific Reports, 9: 4609, 2019
O. Ezrati, J. Friedman and R. Dar. Attenuation of access to internal states in high obsessive-compulsive individuals might increase susceptibility

Left: We use a model of the hand with the finger joints modelled as revolute joints, with twenty degrees of freedom. Middle: Based on models such as these, we can determine the properties of grasps subjects select, for example, when stirring with a spoon, to determine what are the important factors used when generating these grasps. The ellipsoid shows that the subject selected the grasp to maximize the angular velocity about the up-down axis (i.e., to stir the coffee). Figure from the cover of Cortex, 2007. Right: Comparing different models of finger movement to experimental data allowed us to adjudicate between different theoretical models of movement generation (from Friedman and Flash, Exp. Brain Res, 2009).

Noy L, Weiser N, Friedman J. (2017) Synchrony in joint action is directed by each participant’s motor control system. *Front Psychol*. 8:531.

Grants

2018-2020 Minducate Science of Learning scholarship, Tel Aviv University – Smart Robotic Device for Enhancing Motor and Cognitive Learning of Children With Special Needs

2019-2021 MILA – Mind and language, Sagol School of Neuroscience, Tel Aviv University – Kinematic factors in the acquisition of sign language

2020-2023 German-Israeli Foundation for Scientific Research and Development (GIF) – Accelerating motor learning with computational scaffolding
Neuronal Plasticity and Nerve Cell Protection in Disease

Positions
Professor Emeritus of Clinical Biochemistry, Sackler Faculty of Medicine
Lily and Avraham Gildor Chair for the Investigation of Growth Factors
Director, Dr. Diana and Zelman Elton Laboratory for Molecular Neuroendocrinology
Editor-in-Chief, Journal of Molecular Neuroscience
Member, MALAG (Israeli Council of Higher Education)

Research
Our research is characterized by a multi-level approach to the study of brain function, behavior, memory and drug discovery, from molecules to cures. Targeting autism, schizophrenia as well as Alzheimer's disease and related neurodegeneration and utilizing a multidisciplinary approach, our group investigates different aspects of neuronal plasticity and nerve cell protection, at the molecular, cellular and system level. A major focus in the laboratory is on nerve structure and transport mechanisms. We have discovered novel families of proteins associated with cross talk among nerve cells and their support cells, including activity-dependent neurotrophic factor (ADNF) and activity-dependent neuroprotective proteins (ADNPs, with ADNP being a major gene mutated in autism). Small ADNF and ADNP derivatives are in clinical development. The lead compound, davunetide is planned for an advanced Phase II clinical trial with the biotech industry.

Davunetide has previously shown efficacy in several Phase II clinical trials (i.e. in patients suffering from mild cognitive impairment, preceding Alzheimer’s disease and in schizophrenia patients, protecting activities of daily living).

The NAP-motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through Microtubule End Binding (EB) proteins.
D-SAL and NAP: Two peptides sharing a SIP domain.

Gozes I, Schirer Y, Idan-Feldman A. 2015;50:249-60. Dis
and Alzheimer's disease biomarkers

Risperidone and NAP protect cognition and normalize

Reviews

Gozes I. Neuroprotective Drug Development: The Story of ADNP, NAP (Davunetide), and SKIP. In: Neuroprotection in Alzheimer’s Disease; I Gozes, Editor, Elsevier Press. 2016, in press.

Gozes I. Neuroprotective Drug Development: The Story of ADNP, NAP (Davunetide), and SKIP, in:

Sackler Faculty of Medicine Research 2020 166 Nervous System and Brain Disorders

Grants

2016-2019 Ministry of Science and Technology, Israel, Eshkol Fellowships (Shlomo Sragovich, Gal Hacohen Kleiman, student fellowships) 2019-2021 Ministry of Defense Israel, Science Unit, Brain Trauma Biomarkers

2017-2020 ERA-NET Neuron, Pleiotropic Effects of ADNP in Mental Disorders (Ministry of Health)
The Molecular Basis of the Regulation of Immune and Cancer Cells by Ion Channels

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
Ion channels are membrane-embedded molecular machines that enable cells to communicate with their extracellular environment. Ion channels regulate a host of physiological processes such as neuronal excitability and immune cells activation. Consequently, genetic mutations that hamper their function can lead to severe pathologies, which include epilepsies, cardiac arrhythmias and transformation of cancer cells.

Our lab is interested in the utmost basic molecular and structural aspects of the emerging roles ion channels play in microglia, the resident immune cells of the brain. Any disturbance to brain homeostasis evokes rapid microglial transformation from a resting to an activated, phagocytic state. Ion channels, and other signalling cascades, orchestrate this activation. However, immune response in a central and delicate organ such as the brain can be a double-edged sword, exacerbating both acute conditions such as stroke and neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases.

Our efforts for elucidating how ion channels contribute to microglial activity are equally supported by combining electrophysiological and fluorescence, which enable the characterization of ion channel dynamics, with x-ray crystallography for structural analysis at the atomic level.
Using a combined multidisciplinary approach, which includes fluorescence, x-ray crystallography, and electrophysiology, we pursue better understanding of the molecular mechanisms and protein dynamics governing the regulation of these channels and, in turn, elucidate how they contribute to microglial activity. Ultimately, unveiling the molecular basis of microglial ion channels modulation may prove beneficial for microglial-related brain pathologies.

Publications

Grants

2017 – 2020 Israel Science Foundation (ISF), Personal Grant

2017 – 2019 Israel Cancer Research Fund (ICRF), Research Career Development Award (RCDA)
Brain Mechanisms of Human Emotion Generation & Regulation

Laboratory for Brain and Emotion Experience
Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center

Positions
Professor of Psychiatry and Psychology, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, School of Psychological Sciences and Sagol School of Neuroscience
Director, The Sagol Center for Brain Functions, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center

Research
Investigating brain mechanisms underlie generation and regulation of the human emotional experience, in healthy and pathological states. The research is based on measuring indices of brain structure and functional dynamics via MRI (functional-MRI, DTI and Volumetric-MRI) and separate or simultaneous recording of electrical signals (scalp-EEG and intracranial-EEG). The characterization of individual brain response is based on correlating neural activity and connectivity with behavioral and physiological measurements of emotionality (e.g. heart rate, hormone secretion, genetic expression, skin conductance, eye movements and verbal output). Induction of emotional states is achieved via film and music media, inter-personal interactions, and interactive social games. Regulation of emotions is modulated via on-line feedback protocols from brain signals in a closed loop set-up (i.e. NeuroFeedback). The lab is also involved in studies aim to advance translation while focusing on neural markers of vulnerability and recovery with regard to post...
traumatic disorders (e.g. anxiety and depression), developmental disorders (e.g. schizophrenia and personality) and neurodegenerative disorders (e.g. parkinson disease). An essential part of this aspect of our work is the development of advanced new tools for acquiring and analyzing whole brain neural measurements; including applying multi-scale mapping for capturing dynamics of brain networks.

Publications

Bregman, N., Thaler, A., Mirelman, A., Gurievich, T., Gana-Weiss, M., Orr-Urtreger, A., Hendler, T,

Hendler T, Raz G, Bleich M. (2017) Social affective context reveals altered network dynamics in schizophrenia patients. *Accepted for publication to Translational Psychiatry*

Chapters and Reviews

Grants
2020-2024 Israel Precision Medicine Partnership Program (IPMP), with the Israel Science Foundation (with Noam Shomron)
Computational Motor Control and Clinical Applications to Upper-Limb Rehabilitation

Position
Professor, Sackler Faculty of Medicine
Chair, Department of Physical Therapy
Movement Science Lab., Department of Physical Therapy
Associate Editor, Journal of Electromyography & Kinesiology

Research
Behavioral and computational motor control is our field of research. This is a main venue for understanding the motor system and its organization, in healthy and clinical populations. In the last years, we have dedicated major efforts in investigating methods and technologies (virtual reality, robot-based rehabilitation, neuro-stimulation) that can potentially enhance motor recovery and functional performance in clinical populations with a focus on upper-limb motion in stroke survivors. Mathematical model-based, as well as empirical neuromotor approaches, are used in our research for studying and understanding laws of motor control and sensorimotor integration.

Publications

Top: Schematic view of arm and trunk rotation used in modeling arm-trunk coordination based on a geometric algebra approach. *Right:* Arm endpoint and trunk paths (horizontal plane view; i.e., from the above) during reaching movements to contra-, center and ipsilateral visual targets for two healthy controls (A, B) and four stroke patients with mild (C), moderate (D) and severe (E-F) hemiparesis. Center-out paths to targets in the physical environment are depicted in blue traces and 2D virtual environment in red traces.

Chapters

Role of Potassium Channels in Neurotransmitter and Insulin Release in Diabetes

Position
Professor Emeritus, Sackler Faculty of Medicine

Research
We have a long standing interest in the study the molecular mechanisms of modulation of voltage gated K⁺ (Kv) channels by interaction with signaling molecules. We were first to describe modulation of a brain Kv channel by major protein components of the exocytotic machinery. Since then our main focus is the role of Kv channels in transmitter release, finding that it may be far more than just repolarizing the membrane potential: independent of K⁺ currents but mediated by protein-protein interactions with the exocytic SNARE proteins. The dual actions of the channel, through its currents and via its interaction with SNAREs, in combination, may reinforce the known activity dependence of dense core vesicle exocytosis.

Main research projects currently in the lab:
1) Study of the novel role of Kv2.1 potassium channel in insulin secretion from pancreatic islet β cells, as a target for novel drug design for the treatment of type-2 diabetes;
2) Study of structure-function and modulations by presynaptic modulators of Kv2.1 and other Kv channels, specifically KCNQ2 and KCNQ3, important in axonal and synaptic excitability.

Kv2.1-C terminal domain, C1a, wraps around the N terminus and is accessible for protein-protein interactions. Using biophysical and FRET analyses, combined with computational biology approach dealing with homology and ab initio modeling of protein structures, proteins docking simulations and molecular dynamics.

Kv2.1 (Lvov et al., J. Biol. Chem. (2009))
Research methods:

Biophysical: 1) Two-electrode voltage clamp and patch clamp techniques for the study of whole cell and single channel currents. 2) Membrane capacitance and amperometry measurements for the study of exocytosis.

Biochemical: co-immunoprecipitation, immunohistochemistry, recombinant protein purification, etc, for the study of in vivo and in vitro protein-protein interactions.

Imaging: 1) Fluorescence Resonance Energy Transfer (FRET) for the study of protein-protein interactions. 2) Total Internal Reflection Fluorescence Microscopy (TIRFM) for the study of neurotransmitter vesicles behavior.

Publications

Review

Sleep and Its Relation to Cognition

Position
Associate Professor, Sackler Faculty of Medicine

Research
Sleep is a universal behavior that is present across the animal kingdom. We spend a third of our lives sleeping, disconnected from the world around us. Our sleep is closely regulated so that when we are sleep deprived, we ultimately compensate with longer, deeper sleep. Sleep helps our cognitive performance, promoting learning and memory consolidation. Lack of sleep immediately affects our cognition, mood, and health. All this suggests that sleep is essential, but what exactly is it about brain activity during sleep that is so crucial for restoring our normal cognition?

Sleep also involves dramatic changes to our perceptual awareness. Sometimes our consciousness fades altogether while at other times we experience vivid dreams. Although our brain continues to be active, we are mostly disconnected from sensory signals such as sounds, which would otherwise be perceived, trigger plasticity and result in behavior. How does the internal state of brain activity during sleep affect brain responsiveness and perceptual awareness?

Our goal is to understand how sleep relates to cognition and perception. Our research is guided by a belief that such studies require a combination of human and animal models. We therefore use multiple experimental techniques, focusing on the strengths of each setup to investigate the same key questions synergistically. Animal models are used to investigate underlying mechanisms, by performing detailed recordings of electrical activity and by manipulating neuronal activity with optogenetic, electrical and sensory stimulation. Human studies are carried out for careful investigation of cognitive factors and for studying large-scale brain activity (with fMRI, EEG, recordings in neurosurgical patients, and behavioral tests).

Intracranial sleep recordings in neurosurgical patients reveal that slow waves and sleep spindles – the hallmark EEG oscillations of sleep – occur mostly locally and have a tendency to propagate from medial prefrontal cortex to the medial temporal lobe. Therefore, intracerebral communication during sleep is constrained as sleep oscillations often occur out-of-phase in different brain regions.

Publications

Grants

2015-2020 Israel Science Foundation grant
2020-2025 ERC Consolidator Grant
Translational Neuroscience

Positions
Professor, Sackler Faculty of Medicine

Research
We focus on developing cell-based and gene-based therapies for neurodegenerative diseases. We use advanced methods, such as CRISPR/Cas9 for in vivo gene modification, and take advantage of multiple platforms for the delivery of therapeutics into the CNS, including mesenchymal stem cells, exosomes and peptides. Using cell cultures and animal models, we evaluate the effect of gene modification on cognition and behaviour, as well as on disease-related biochemical and histological features.

Publications

Segal-Gavish H, Barzilay R, Rimoni O, Offen D. Voluntary exercise improves cognitive deficits in

Intra-nasal delivery of exosomes, delivered from human mesenchymal cells, improves maternal pup retrieval in a mice model of autism (Perets et al 2018).

Reviews

Grants
2017-2019 Ministry of Agriculture and Rural Development, A. Helman, co-PI
Neural Circuits and Olfactory Perception in Drosophila

Position
Senior Lecturer, Sackler Faculty of Medicine and Sagol School of Neuroscience

Research
We are exploring the various mechanisms by which neural circuits encode information and support behaviour, learning and memory. In addition, we are studying how the connectivity and activity of such circuits and neural networks are affected by molecular mechanisms underlying brain disorders. We use a multidisciplinary approach, with the *Drosophila* olfaction system as our model system. Our studies incorporate *in vivo* whole cell patch recordings, *in vivo* functional imaging, behaviour experiments, molecular biology, mathematical modelling and genetics.

Projects in the lab include:
1. Intensity and identity coding in a multidimensional sensory system – the *Drosophila* olfactory system.
2. Neuropeptidergic modulation of olfaction and its effect on odour perception.

Drosophila as a model system for systems neuroscience. **A.** Using the genetic tools available for *Drosophila* there is accessibility for defined neurons. **B.** *In vivo* whole cell patch recording in awake behaving animals. **C.** *In vivo* functional imaging using genetically encoded sensors in awake behaving animals. **D.** Genetic access to defined neurons allows manipulation of the activity of neural circuits in behaving animals.
3. The role of deregulated channel proteins and altered neuronal function in Frontotemporal Dementia.

4. A novel multifaceted approach to study the mechanisms underlying the effects of human genes associated with schizophrenia using Drosophila.

Publications

Grants
2017-2019 United States-Israel Binational Science Foundation
2016-2020 ERC Starting Grant
2018-2023 ISF, Exploring the physiological role of the voltage dependence of muscarinic G protein coupled receptors in Drosophila learning and memory
2019-2022 DFG, Linking the molecular organization of active zones to temporal neural coding
2020 MAFAT, Re-wiring the Drosophila Melanogaster pheromone olfactory system to search and detect specific odor signals
Molecular Mechanisms of Neurodegeneration

Position
Associate Professor, Sackler Faculty of Medicine

Research
Our lab’s research is focused on understanding molecular mechanisms of neuro-degeneration using primary rodent cultures, patient’s iPSC derived motor neurons and in vivo transgenic mice models. Our lab’s main goal, using advanced microscopy, biochemistry, genetic and pharmacological approaches, is to gain knowledge that will elucidate the critical events leading to neuron degeneration and neuromuscular-junction (NMJ) disruption in Amyotrophic Lateral Sclerosis (ALS). This knowledge hopefully will be the basis of future drugs and treatments development. ALS is a lethal adult-onset motor neuron disease, pathologically characterized by motor neuron degeneration. No effective treatment exists for ALS, despite many failed attempts. This is largely because we require a more thorough mechanistic understanding of ALS pathogenesis to rationally develop therapeutics. The lab is taking a fresh approach to this challenge using a novel NMJ-on-a-Chip platform that mimic the human motor unit. This novel Lab-on-a-Chip platform enable to grow patients’ neurons and muscles on a silicon chips thus opens new possibilities for experimental studies of neuron degeneration and regeneration process, and provide a strong tool for personalized medicine. Specifically, lab projects are focused to understand key spatial and temporal signaling mechanisms, including axonal transport, receptor organization along the plasma membrane and local protein synthesis events at axons and synapses.

- Microfluidic devices: In-house design and fabrication of compartmentalized microfluidic chambers for deciphering spatiotemporal process
- Transgenic mice models: Mechanistic understanding of motor neuron disease using in vitro and in vivo Tg mice model
- Live imaging: High resolution live-cell imaging of axonal transport, NMJ activity, and protein synthesis.
- iPSC-derived muscle and motor neurons: Patient-derived motor neurons for investigating disease mechanisms in familial and sporadic ALS.

Publications

Gershoni-Emek N, Altman T, Ionescu A, Costa CJ, Gradus-Pery T, Willis DE, Perlson E. Localization
of RNAi machinery to axonal branch points and growth cones is facilitated by mitochondria and is disrupted in ALS. Front Mol Neurosci. 2018;11:311.

Reviews and chapters

Grants

2019-2021 Ministry of Science and Technology State of Israel, China-Israel Flagship Projects Brain Sciences. The mechanisms of BDNF-TrkB signaling in neurodegenerative disease

2019-2024 Israel Science Foundation, The Interplay between Local Synthesis
and Axon/NMJ Maintenance and Degeneration in ALS.

2020-2022 Israel Innovation Authority (Kamin), ALS treatment by miR126-5P manipulations via lentivirus

2020-2023 JPND-Multinational research projects on Personalised Medicine for Neurodegerative Diseases, Humanized high-throughput co-culture system for motor neuron diseases
Brain Injuries: Cognitive, Behavioral and Cellular Outcome

Position
Professor, Sackler Faculty of Medicine
Sagol School of Neuroscience faculty member
Dr Miriam and Sheldon G Adelson Chair in Biology of Addictive Diseases

Research
Our group has a long history in mTBI research, not only in characterizing behavioral and biochemical sequelae of blunt head trauma, but also in developing preclinical models of mTBI of translational relevance to support the development of new treatment strategies and drugs. In order to look for answers regarding the blast induced traumatic brain injury, we have developed a blast injury model for mice that resembles, as much as possible, the conditions on the battlefield or at a terror-attack site. As such, the outcomes of the “real-life-like” exposure to the blast in our model may vary from severe to mild brain injury under controlled conditions for each mouse.

Publications

Tweedie, D., Rachmany, L., Rubovitch, V., Li, Y., Holloway, H.W., Lehrmann, E., Zhang, Y., Becker, K.G., Perez, E., Hoffer, B.J., Pick C.G.*, and Greig, N.H. * Blast traumatic brain injury induced cognitive deficits associated with hippocampal neurodegeneration...

Reviews
Molecular Mechanisms of Drugs for Neuropsychiatric Disorders

Positions
Professor Emeritus, Sackler Faculty of Medicine

Research
Main projects in the lab include:
1. Presynaptic monoamine transporters and the vesicular monoamine transporter as targets for neuropsychiatric drugs.
3. Quaternary serotonin-reuptake inhibitors as novel anti-platelet drugs.
4. Methylphenidate (Ritalin): abuse potential and long-term effects.
5. Neuronal rescue by Rasagiline (MAO-B inhibitor) in thiamine deficiency.

Publications

The Molecular Basis of Epileptic Encephalopathies and Autism

Position
Senior Lecturer, Sackler School of Medicine
Director, Goldschleger Eye Research Institute
Co-Director, Biomed@TAU Research Hub: Autism & Other Developmental Disorders

Research
We study the neuronal and molecular basis of visual system abnormalities in severe epilepsy and autism. One out of every 68 children is diagnosed with an autism spectrum disorder, characterized by impaired social skills. Moreover, autistic features are observed in people suffering from epileptic encephalopathies, a group of severe disorders characterized by refractory seizures and cognitive deficit with limited treatment options and poor prognosis.

Visual system abnormalities are often observed in both disorders, ranging from lack of eye contact, through abnormal visual processing, to photosensitive seizures. The tremendous advancement in genetic studies helped to identify the involvement of many genes in the etiology of epilepsy and autism. However,
our understanding of the pathways leading from a genetic mutation to abnormal brain function is still in its infancy.

Ion channels are molecular machines, crucial for transforming synaptic inputs into electrical response, controlling neuronal firing and neurotransmitter release. One of the pivotal families of ion channels are the voltage-gated sodium channels (Na\textsubscript{v}). Indeed, mutations in multiple types of Na\textsubscript{v} channels were identified in epilepsy and autism patients. However, connecting the dots between Na\textsubscript{v} dysfunction and the resulting diseases have proven to be a formidable task.

In order to bridge this gap, we harness the strength of mouse genetics, combined with electrophysiological recordings, and behavioral experiments in mice. With this multidisciplinary approach we aim to uncover the neuronal alterations leading to defective information processing in diseased brain, develop early diagnostic tolls as well as novel treatment options.

Publications

Dascal, N., Rubinstein, M. Lithium reduces the span of G protein-activated K+ (GIRK) channels inhibition in hippocampal neurons. Bipolar Disord.

Grants

2018 – 2021 ERA-Net E-Rare – Curing Dravet Syndrome by Gene Therapy
2017 – 2022 ISF. Deciphering the neuronal and molecular basis of epileptogenesis and compensatory mechanisms in Dravet Syndrome
2017 – 2019 Fritz Thyssen Foundation. Unveiling the neuronal and network basis for visual system dysfunction in Dravet Syndrome
Novel Antioxidant for Treatment of Degenerative Diseases

Positions
Professor Emeritus, Sackler Faculty of Medicine

Research
We are studying the potential of S-allylmercapto-N-acetylcysteine (ASSNAC) a newly developed derivative of allicin (the active component in garlic) to serve as a treatment for oxidative stress associated degenerative diseases. The research involves cell biology tools and animal models.

The following specific subjects are studied:

- Demonstrating the capacity of ASSNAC to activate the transcription factor Nrf2 resulting in up-regulation of the antioxidant cellular mechanisms that increases the protective capacity of cells against reactive oxygen species.
- Testing the potential of ASSNAC to modulate the bone marrow stem cells population and attenuate the clinical manifestations of neurodegenerative diseases, diabetes, and osteoporosis.
- Testing the potential of ASSNAC to attenuate ocular degenerative diseases such as cataract and light-induced retinal damage.

Publications

Stability-Plasticity Balance in Hippocampal Circuits and its Disruption in Alzheimer’s Disease

Positions
Associate Professor, Sackler Faculty of Medicine
Editorial Board Member: eLife, Scientific Reports, Frontiers in Cellular and Molecular Neuroscience
Member, American Federation for Aging Research (AFAR) National Scientific Advisory Council
Member, Azrieli PhD fellowship committee
Member, Managing Committee of Sagol School of Neuroscience

Research
How neuronal circuits maintain the balance between stability and plasticity in a constantly changing environment remains one of the most fundamental questions in neuroscience. Empirical and theoretical studies suggest that homeostatic negative feedback mechanisms operate to stabilize the function of a system at a set point level of activity. While extensive research uncovered diverse homeostatic mechanisms that maintain activity of neural circuits at extended timescales, several key questions remain open. First, what are the basic principles and the molecular machinery underlying invariant population dynamics of neural circuits, composed from intrinsically unstable activity patterns of individual neurons? Second, is homeostatic regulation compromised in Alzheimer’s disease (AD) and do homeostatic failures lead to aberrant brain activity and memory decline, the overlapping phenotypes of AD and many other distinct neurodegenerative disorders? And finally, how do homeostatic systems operate in vivo under experience-dependent changes in firing rates and patterns? To target these questions, we have developed an integrative approach combining electrophysiology, advanced optical imaging and molecular biology, together with longitudinal monitoring of activity from large populations of hippocampal neurons in freely behaving mice. Utilizing these state-of-the-art approaches, we study
how firing stability is maintained at different spatial scales and what are the mechanisms leading to destabilization of firing patterns in AD-related context.

Publications

Review

Grants

2017–2020 Heritage Legacy Fund and Israel Science Foundation

2017–2022 ERC Consolidator Grant

2020-2023 DFG Grant (with Prof. Silvio Rizzoli, U. GÖTTINGEN)

2019-2022 Lower Saxony – Israel Research Cooperation, Volkswagen Grant (with Prof. Silvio Rizzoli, U. GÖTTINGEN)

2019-2020 Rosetrees Trust Grant

2018-2023 Israel Science Foundation
Basic and Applicative Research of Eye Physiology, Diseases and Function

Positions
Professor, 'Bedimus' (Ret.) Sackler Faculty of Medicine
Editorial Board, Translational Vision Science & Technology (TVST)
International Committee Member, ARVO

Research
The eye presents many challenges for research regarding unsolved conditions such as retinal and optic nerve assaults, damage to eye by surrounding conditions of work and every day activity.
The following specific subjects are studied:
- Optic nerve research: creating models of trauma and disease to investigate the mechanisms of degeneration and regeneration
- Investigate ways to treat corneal injury and diseases
- Ultraviolet light damage to the eye
- Research on the neovascular process in the eye and search ways to prevent it
- Occupational and environmental factors affecting eye and vision

Publications
Tzameret A., Yael Piontkewitz Y, Anat Nitzan A, Nir Rudoler N, Marina Bruzel M, Yael Zilberstein Y,
Dr. Eran Stark, M.D., Ph.D.
Department of Physiology and Pharmacology
Sackler Faculty of Medicine
Sagol School of Neuroscience

www.eranstarklab.com
Email: eranstark@post.tau.ac.il

Spiking Network Mechanisms Underlying Cognition

Position
Senior Lecturer, Sackler Faculty of Medicine and Sagol School of Neuroscience

Research
We study the way neuronal networks give rise to function. There are many levels to approach this topic and we are interested at the spiking level, mainly in local circuits of free, behaving animals. We focus on short-term memory and spatial navigation in rodents. For this, we are continuously developing technologies to interface bi-directionally with the intact brain at the spatiotemporal resolution of a single neuron and a single spike. Our mechanistic approach involves high-density recording and manipulation of dozens to hundreds of neurons simultaneously, while freely moving rodents perform cognitive tasks. By erasing and writing individual spikes of multiple neurons in real time, we precisely modify network-spiking activity during specific epochs (for instance, short term memory maintenance), and study the effects on behavior (memory deterioration or boosting).

Publications

A. Dynamic segregation of neuronal networks into cell assemblies. In the freely-moving mouse, external input is applied to one group of excitatory pyramidal cells (PYR1), which drive inhibitory cells (INT), which then inhibit a second group (PYR2). At certain input frequencies, inhibition actually induces spiking in PYR2. The activity of the PYR1 and PYR2 assemblies (each of which may represent a distinct memory) is thus linked and multiplexed in time. B. Hardware for recording and manipulating circuit elements in freely moving animals. A diode-probe device consists of multiple optical fibers, each coupled to a distinct light source and associated with a distinct electrode array. In animals that express light-sensitive ion channels (opsins), light applied at one site induces spiking of multiple cells only at that site. μLED-probes take spatial resolution one step further by implanting neuron-sized diodes directly in the brain.

Reviews

Grants

<table>
<thead>
<tr>
<th>Year</th>
<th>Grant Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-2021</td>
<td>ERC Starting Grant</td>
</tr>
<tr>
<td>2016-2020</td>
<td>CRCNS (NSF-BSF) Grant</td>
</tr>
<tr>
<td>2016-2020</td>
<td>ISF Grant</td>
</tr>
<tr>
<td>2017-2020</td>
<td>Rosetrees Grant</td>
</tr>
<tr>
<td>2017-2019</td>
<td>ISF Bikura Grant</td>
</tr>
</tbody>
</table>
Functional and Structural Brain Connectivity using MRI

Positions

Senior Lecturer, Sackler Faculty of Medicine
Faculty member, Sagol School of Neuroscience

Research

Work in our lab is focused on exploring the relations between brain structure, function and behavior using magnetic resonance imaging (MRI). We’re using state-of-the-art MRI methodologies to study inter-and intra-subject variability in brain connectivity and use behavioral experiments to study whole-brain neuroplasticity.

Specifically, we develop models to predict individual differences in brain activity and human behavior from brain structure and connectivity measurements. We also study learning-related brain plasticity by developing behavioral tasks that induce functional and structural brain modifications and investigate the underlying mechanisms of functional neuroplasticity as measured with fMRI. We also work on advanced statistical modeling of MRI data.

Predicting individual differences in brain activation in a variety of tasks: Examples for tasks in the language, decision making and social domains are shown for 4 representative subjects, where actual activation is shown in red and predicted activation in yellow. The specificity of prediction is demonstrated by the connectivity matrix between true and predicted activation maps of 100 subjects (note the pronounced diagonality of the correlation matrix).
Publications

Grants

2019-2020 Aufzien Family Center for the Prevention & Treatment of Parkinson’s Disease Grant

2019-2020 The Goldstein-Goren Center for Mind and Language

2019-2020 The National Institute for Psychobiology in Israel

2018-2022 Israel Science Foundation Grant
Occupational Science: Investigating Occupations, Health and Well-Being Among Women

Positions
Lecturer, Sackler Faculty of Medicine
Committee Member, Occupational Science Europe Research Committee

Research
Occupational Science is the study of human participation. Research in this area focuses on specific populations and their unique challenges to engage in meaningful occupations. Our primary area of research is exploring the relationship between engagement in occupations, health and well-being among women, especially as related to the role of motherhood. We focus on the effect of occupational performance on life satisfaction and perceived physical and mental health in various life-changing situations. The populations that we study include women who experienced a major change in their lives (such as transgender women or becoming a caregiver), women diagnosed with illness or having a disability, mothers of children who were diagnosed with Autism Spectrum Disorder (ASD) or Attention Deficit Hyperactivity Disorder (ADHD), and healthy mothers from different cultures/religions.

Our second area of research is developing and evaluating advanced teaching methods in occupational therapy, specifically, testing the contribution of Problem-Based Learning (PBL) to the development of students’ learning skills, knowledge, communication skills and success in clinical fieldwork studies.

Publications

Investigating Sensory Modulation Disorder (SMD) Over Life Span

Positions
Lecturer, Sackler Faculty of Medicine

Research
SMD is a health condition in which abnormal responses to naturally occurring stimuli is demonstrated in a manner that interferes with daily life, affecting 10% of otherwise healthy individuals. Our lab studies a unique perspective associating SMD with pain. Our research is aiming to better understand the underlying mechanisms by identifying biomarkers that would specify this health condition, applying psychophysical and neurophysiological methodologies in children and adults. New biomarkers found guide new therapeutic modalities for this population, ameliorating intervention opportunities: Specifically we developed a neurofeedback system for treating SMD, based on our findings of EEG components that characterize individuals with SMD.

Moreover, in trying to understand the potential role of SMD in neurodevelopmental and other disorders trajectories, we study SMD as a risk factor in other health conditions such as chronic pain, mental health, substance use disorder, and neurodevelopmental disorders.

Research is performed in the Sensory Integration Laboratory at TAU and in hospitals.

Alpha (7.5 – 12 Hz) distribution map of activity (EEG recording) in 2 control and 2 sensory over-responsive subjects. Red color indicates greater alpha power. Control (CTR) but not SOR subjects have high alpha activity, which increases in posterior electrodes.
Publications

Lipskaya-Velikovsky, L., Bar-Shalita, T., Bart, O. Sensory modulation and daily-life participation in people with schizophrenia. Comp Psych. 2015, 58:130-137

Grants

2017-2021 Israel Science Foundation (ISF)
Nursing Genetics and Information Technologies

Positions
Associate Professor, Sackler Faculty of Medicine

Research
Our research focuses on two main fields: 1. Genetics 2. Nursing and Information Technologies

In genetics our interest is in factors influencing individual decision-making on taking genetic tests. The decision whether or not to take a test may be influenced by factors relating to the illness tested for such as its severity or how far it can be controlled, or by personality factors such as risk-perception and optimism, or by the identity of the agent recommending the test (doctor or nurse) and their perceived epistemic authority. In a series of studies we are currently conducting we are trying to find linkages between these factors and the decision whether or not to take genetic tests.

Another issue being studied is the question “to whom does genetic information belong?” Genetic information is of importance to the tested individual’s family as well as to them self. However, not all test subjects share the findings with their relatives. In a large-scale study, conducted together with Dr. Roy Gilbar of the Leicester University and funded by the Israel Cancer Association we examined the attitudes, opinions and behavioral intentions of genetic counselees regarding the disclosure of their genetic information to their families. We are planning a qualitative study to examine views of genetic counselors on this topic.

Information Technologies: Due to the rise of internet technology, medical information is no longer the exclusive property of medical service givers – it is now accessible to everybody – and this new situation has an effect on patient-caregiver relations. Among the research studies we are carrying out, we have investigated the attitudes of nurses towards patients who come forward with information found on the web, what affects those attitudes, and the reactions of nursing teachers to students who bring such information to class. Up to now, most research into this issue has concentrated on the professional caregiver’s point of view. We wish to turn the spotlight onto the patient’s point of view, and on how they feel after bringing Internet information to an appointment with their doctor or nurse.

Publications

Ohana S, **Barnoy S.** Israeli E-patients’ informational needs. *Nursing Outlook*, 2019;67, 190-198.

Shemesh T, **Barnoy S.** Assessment of the intention to use mobile health applications using a technology acceptance model in an Israeli adult population. *Telemedicine e-Health*; In press

Gilbar, R. and **Barnoy, S.** Facing legal barriers regarding disclosure of genetic information to relatives. *New Genetics and Society*, Accepted for publication, April, 2020.

Grants

2020-2022 Israel National Institute for Health Policy Research
Co-Morbidity of Sensory-Motor and Cognitive Dysfunction and Psychosocial Problems

Positions
Senior Lecturer, Sackler Faculty of Medicine
Member, Israeli National Board for Certification of Occupational Therapy – Ministry of Health
Member, National Advisory Committee on Services for Child Development – Ministry of Health

Research
Our research is focused on the association between sensory-motor function and psychological aspects (anxiety, sense of coherence, hope, loneliness, etc.) of typically developed children and children with developmental problems such as Developmental coordination disorder (DCD), Attention Deficit Hyperactive Disorder (ADHD), and Sensory Processing Disorder (SPD). In the studies I conduct I try to learn and understand more about the mechanism behind the co-morbidity of sensory-motor dysfunctions and psychosocial problems. Further more, there are some studies where we assess the efficacy of sensory-motor intervention and its influence on the psychological behavior of the treated children.

Another related topic that is in the focus of my research is children’s participation. According to the International Classification of Functioning, Disability and Health (ICF, 2001), Participation is relatively a new concept that reflects a new approach to functioning and serves as an outcome measure. Therefore we developed a questionnaire to assess pre-school children’s participation. We are now developing additional questionnaires to assess infants, preschoolers and school age participation. We are running a few studies to assess differences in participation patterns of children with various developmental problems. Moreover I have started to investigate the influence of Occupational Therapy (OT) intervention and sensory-motor approaches on children’s satisfaction and participation.

Publications

Investigating Pain Perception and Mechanisms of Chronic Pain

Position
Professor, Sackler Faculty of Medicine
Director, Biomed@TAU Pain Research Hub, Pain Forum

Research
We study the function of the pain system among healthy subjects, individuals with mental disorders and individuals with cognitive impairments. We are interested in the manner with which temporal and spatial aspects of painful events are processed and in changes that occur in pain modulation capacity during various conditions such as stress, distraction and mindfulness.

We also study the underlying mechanisms of chronic pain that develops following traumatic events. These include physical injuries such as spinal cord injury, brain injury and brain stroke as well as psychological traumas such as shell shock, captivity and torture.

We are particularly interested in the interaction between the pain and the stress systems in these conditions and among healthy subjects. We use state of the art methods including quantitative somatosensory testing, evoked related potentials and functional magnetic resonance imaging. The experiments are performed in the pain laboratory at TAU and in hospitals.

Publications

Tsur N, Defrin R, Ginzburg K. Posttraumatic stress disorder, Orientation to pain, and pain perception...

Reviews and Chapters

Grants
2015-2019 ISF-Israel Science Foundation
Emotional Management, Cultural Competence and Decision-Making

Positions
Senior Lecturer, Sackler Faculty of Medicine
Chair, Department of Nursing

Research
Qualitative and quantitative research methods are used to study patients’ and caregivers’ attempts to structure their emotions through the process of emotional management. We explore the feelings experienced by healthcare workers and patients and how they cope with differences between expected emotions and experienced emotions in life-threatening situations (emergency and disaster) and in the treatment of mental patients and terminal illnesses. Investigation of the emotions experienced by nurses and how they cope with these emotions includes attention to caring and emotional resilience. We focus on self-care research: understanding the interventions, correlates and outcomes of nurses’ self-care by International research on caritas as healing. Our research involves studying cultural competence, which enables nurses to care for and to communicate with patients from different cultural and ethnic backgrounds. Moreover, we examine perceptions and knowledge of caregivers and patients concerning chronic illness, end of life, and the effects of treatment on the caregiver, patient, and family members. Understanding these aspects is essential for creating caring environments for nurses, patients and families within today’s complex health care organizations.

Publications

Itzhaki M. Knowledge and feelings about colorectal cancer among the Jewish adult population in Israel: A mixed methods study. Applied Nursing Research. 2018, 43, 64-68. DOI: org/10.1016/j.apnr.2018.07.003

Melnikov S, Itzhaki M & Koton, S. Differences between new immigrants from the Former Soviet Union and veteran residents in knowledge, perception and risk factors of stroke. *Journal of Cardiovascular Nursing*. 2015, DOI: 10.1097/JCN.0000000000000278

Chapter
Quality of Care and Patient Safety

Positions
Senior Lecturer, Sackler Faculty of Medicine
Head, Accelerated Program for Non-Nursing B.A. Graduates

Research
Peri-operative Factors and Their Impact on Post-operative Recovery

Our research area is developing in two tracks: a) discovering the factors that affect quality and safety behavior of healthcare workers (HCWs) and b) examination of psycho-social and bio-physiological factors before and after surgery and their impact on short-/long-term recovery and rehabilitation. The first research track focuses on both the “human element” variables and the systemic approach to the quality improvement, clinical risk management and patient safety issues such as medical error-reporting, safety culture, disclosure errors to patients, patient empowerment and more. The studies highlight the barriers that have to be addressed when planning and implementing changes to improve quality and patient safety in healthcare. The second track addresses the influence of variables such as personal self-efficacy, situational anxiety, health literacy, subjective readiness to surgery, gender, ethnicity etc., on post-operative recovery. These studies aim to identify variables that could have a positive or negative effect on readiness to leave hospital after surgery, to comply with the recommendations on discharge from hospital, to adhere rehabilitation programs and more.

Publications

report to work in emergencies. *International Nursing Review*, e-published prior to print.

Akrish, O., Bluvstein, I., **Kagan, I.** (2017). Applicability of Tinto’s “Student Integration Model” in explanation of tendency to leave among nursing students participating in accelerated (second career) program for non-nursing BA graduates. *Guf Yeda*, 15, 4-9 [Hebrew].

Epidemiology of Cardiovascular Diseases & Risk Factors

Position
Associate Professor, Sackler Faculty of Medicine
Head of Doctoral Studies, Department of Nursing
Adjunct Associate Professor of Epidemiology, Johns Hopkins University

Research
During the last 18 years, I have been working on cardiovascular diseases epidemiology, focusing mainly in the epidemiology of stroke. The study of triggering risk factors for stroke was the main aim in my PhD thesis. I am especially interested in focusing my research in the study of factors that have a potential effect on short-term risk of stroke, both in persons with known cardiovascular risk factors and those who apparently do not have them and still, at a specific moment, have a stroke. Assessment of this kind of risk factors has a significant potential to contribute to prevention strategies thus reducing the burden of stroke to health systems and society. During my postdoctoral fellowship and afterwards, my research has extended to include differences in stroke characteristics, distribution of risk factors, stroke management and outcome by age, sex, race and other personal characteristics in different populations.

Since the establishment of the ongoing triennial National Acute Stroke Israeli (NASIS) registry in 2004, as a member of the registry’s steering and publications committees, I collaborate with specialists in neurology in studies aimed at characterizing stroke at a national level. These studies, based on national unselected data on hospitalized stroke, provide both clinicians and health policy makers with information required for optimizing prevention strategies and care of stroke patients. As consultant epidemiologist at the Comprehensive Stroke Center at the Chaim Sheba Medical Center in the last years, I am aware of the needs of patients and families, as well as physicians and other health professionals, and am able to direct my research efforts towards topics which influence clinical practice.

Publications

Bio-Psycho-Social Effects of Psychological Trauma

Positions
Visiting Senior Lecturer, Sackler Faculty of Medicine

Research
In our research we aim to uncover the mechanisms at the basis of the relations between exposure to different types of traumatic events (e.g., childhood sexual, physical and emotional abuse, domestic violence), and various outcomes, including psychological distress and psychopathology (e.g., PTSD, depression, suicidality), somatic and physical health difficulties (e.g., chronic pain, morbidity, somatization) as well as functional difficulties (e.g., vocational, social, and familial functioning). We use an interdisciplinary approach, advanced research methods and rigorous statistical analyses to understand the underlying dynamics of the questions at hand, and to promote the development of clinical interventions.

Publications

Participation in Everyday Life and Occupational Therapy Practice for People with Psychiatric Disorders

Positions
Lecturer, Sackler Faculty of Medicine

Research
Participation in meaningful activities according to personal values and choices is one of the central components of health and well-being. Moreover, it is one of the ultimate goals of health services delivery, as suggested by the WHO vision. Today, psychiatric disorders still remain one of the main reasons for disability payments all over the world due to the functional disability they cause. Our research is focused on exploring everyday functioning and participation patterns of people with psychiatric disorders that were found to be both unique and similar to those of the general population; and detecting factors affecting the everyday functioning such as functional capacity, motor abilities, sense of belonging and sensory modulation over the more conventional ones (psychiatric symptoms and cognition). In addition, we investigate efficacy of Occupational Therapy (OT) evaluation and intervention process and develop new tools and technics for practice. Since Occupational Therapy services are provided in different settings, including in mental health hospitals, one of our particular areas of interest is investigation of the OT practices in acute settings to promote successful transition to everyday life after discharge and reintegration into community.

Publications

Physical Activity, Gait and Posture in People with Neurological Diseases

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
Our main research focuses on physical activity, gait and balance measurements, predictors, and outcomes in persons with neurological diseases, specifically multiple sclerosis (MS). Currently we are examining the relationship between various physical and mobility parameters with brain damage, determined by MRI methods in different neurological patient groups. Special interest is placed on aerobic function capabilities during various daily and challenging situations. We anticipate that our research will result in quantifying differences in physical activity, particularly in the rates of moderate-to-vigorous physical activity in several neurological patient groups vs. non-diseased controls. The interest in this research is based on the rationale that a better understanding of these mechanisms will facilitate the development of practical interventions, thus minimizing the negative aspects of the disease process. Overall, the research questions range from theoretical exploration to clinical application and are often multi-disciplinary in nature.

Freesurfer results showing the inflated lateral hemispheres view of two MS participants with similar age, EDSS and disease duration. Slow walker images are on the left row, normal walker images are presented on the right row. Cortical thickness is determined according to color; yellow – thick, grey- thin.
Publications

Kalron A, Allali G, Achiron A. Neuro correlates of gait variability in people with multiple sclerosis with fall history. European Journal of Neurology; 2018

Shalmoni N, Kalron A. The immediate effect of stroboscopic visual training on information-processing time in people with multiple sclerosis: an exploratory study [published online ahead of print, 2020]. *J Neural Transm (Vienna)*

Grants

2019-2022 Ministry of Science and Technology
Spinal Form and Function

Position
Senior Lecturer, Sackler Faculty of Medicine
Member, Associate Board, Spine Journal

Research
Clinical, diagnostic, therapeutic, epidemiological, kinematical, and anthropometric investigations of the normal and pathological human spine.

During the last decade, we have focused our research on studying the form and function of the human spine in normal and pathological conditions. We proposed some unique models for the pathogenesis and biomechanics of several spinal pathologies. Specifically, the following research projects were investigated and categorized as clinical (diagnostic, therapeutic and clinical reasoning), kinematical and morphological:

- **Clinical/kinematic:** a. Directional and positional preference of group exercising in individuals with chronic low back pain and osteoporosis; b. Clinical reasoning and decision making; c. Kinematical evaluation of lumbar rotations in erected and fully flexed standing and sitting positions in patients with chronic low back pain.

- **Morphological/Anatomical:** a. A morphometric analysis of the normal and pathological human spine; b. Spinal shape variation and postural changes during growth.

- **Epidemiological:** An epidemiological study on spinal osteoporosis in females and sport related back injuries in children.

Publications

The suggested pathogenesis (A) and kinematics (B-C) in isthmic spondylolysis (ISP).

Weisman A, Masharawi Y. Does altering sitting posture have a direct effect on clinical shoulder tests in individuals with shoulder pain and rotator cuff degenerative tears? Phys Ther. 2018.

Dr. Semyon Melnikov, R.N. Ph.D.
Department of Nursing
The Stanley Steyer School of Health Professions
Sackler Faculty of Medicine

Email: melniko@tauex.tau.ac.il

Health Maintenance Among Immigrants from the Former USSR, Ethiopia and Arab Citizens of Israel

Position
Head, Short-day studies BA Nursing Program Senior
Senior Lecturer, Sackler Faculty of Medicine

Research
Health maintenance among immigrants from the former USSR, Ethiopia and among Arab citizens of Israel.
The rates of chronic illness such as ischemic heart disease and hypertension among immigrants from the former USSR (FUSSR) and among Arab citizens of Israel, and of diabetes among Ethiopian immigrants are higher than those in the general Israeli population.
In my research, I focus on the study of behaviors aimed at health maintenance among immigrants from the FUSSR and Ethiopia, and Arab citizens of Israel according to Bandura's Reciprocal Determinism (1983) model. I will examine how the immigrants' and ethnic minorities members' personal characteristics, such as knowledge and attitudes toward chronic disease, together with environmental effects, are linked to behaviors aimed at maintaining health among immigrants from the FUSSR and Ethiopia, and among Arab citizens of Israel.

Publications

Melnikov S, Itzhaki M, Koton S. (2016). Differences between new immigrants from the Former Soviet Union and veteran residents in knowledge, perception, and risk factors of stroke. *Journal of Cardiovascular Nursing*, 31(6), 500-506
Computational Biomechanics in Motor Rehabilitation

Position Senior
Senior Lecturer, Sackler Faculty of Medicine

Research
The motor function and rehabilitation lab is dedicated to the study of motor mechanisms and rehabilitation strategies. The major research themes of the laboratory are:

1. Design of new evaluation and treatment tools for clinicians, based on state-of-the-art technologies.
2. Quantification, evaluation and feedback, provided to the motor-impaired patient by utilizing real-time data of the kinematics, kinetics and muscular activity patterns.

The work in the laboratory is highly interdisciplinary, combining aspects of biomedical engineering, rehabilitation medicine, physiotherapy, and occupational therapy.

Publications

Levanon Y, Gefen A, Lerman Y, Portnoy S, Ratzon NZ. Key Strike forces and high level of musculoskeletal symptoms, Safety and Health at Work, 2016.

Raveh E, Friedman J, Portnoy S. Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm, Clinical Rehabilitation, 1:269215518774104, 2018.

Gaming for Rehabilitation of Neurological and Geriatric Populations

Position
Senior Lecturer, Sackler Faculty of Medicine
Chair, Department of Occupational Therapy

Research
Our research focuses on achieving a better understanding of the factors hindering and facilitating recovery post-stroke. We have developed interventions aimed to improve the motor recovery and executive functions deficits of these individuals, in order to enhance function in daily living. The effectiveness of these novel interventions is assessed by conducting randomized clinical trials, the highest level of clinical research. We have researched the effectiveness of a ‘Community’ and a ‘Home’ based intervention using video-games compared to traditional therapy for enhancing daily function and participation of individuals with chronic stroke. We are currently collaborating to investigate the use of touchscreen tablets for self-training of the weaker upper extremity to improve dexterity of individuals with acquired brain injury and to improve cognitive abilities of older adults with Mild Cognitive Impairments.

Publications

Ratzon NZ, Friedman S, Zamir S, Amit Y, Rand D. Functional capacity evaluation; does it change the determination of the degree of work disability? Disabil Health J. 2015, 8:80-85.

Book Chapters

Grants
2017–2019 Maccabi Healthcare Services Research Fund
2017–2019 Israel National Institute for Health Policy Research
Investigating the Ergonomics of Occupational Tasks and Driving Rehabilitation

Position
Professor, Sackler Faculty of Medicine

Research
Our research focuses on the ergonomics of occupational tasks such as typing and playing musical instruments. Our current research integrates the usage of 3-dimensional advanced technologies to evaluate the movement of hands, specific devices to evaluate force, computerized technologies to evaluate sitting which enable to refer to dynamic situations and the change in risk factors while performing different tasks. These studies have provided essential information concerning risk factors for musculoskeletal disorders and have led to more recent investigations of the determinants of postural patterns amongst children that may contribute to risks in adolescence and adulthood. The anticipated outcomes of these programs of research are to develop training programs and/or contribute to workspace design to minimize these risks.

Driving rehabilitation is another major area of research. Research explores the impact of disease and disorder on driving with the aim of developing appropriate rehabilitation programs, reflecting the importance of ‘driving’ as a factor in independence as well as a marker of function for variety of populations.

Publications

Grants

2016-2019 Insurance Research Fund, The Israeli Association of Insurance Company
The Role of Glutamate Excitotoxicity in Neurodegenerative and Malignant Diseases

Position
Lecturer, Sackler Faculty of Medicine

Research
Glutamate (Glu) has been shown to play a role not only in neural processes, such as learning and memory, but in bioenergetics, biosynthetic and metabolic oncogenic pathways as well. High extracellular Glu concentrations, such as those found in numerous CNS pathological conditions, ultimately cause the excitotoxic death of the exposed neurons and entail irreversible neurological deficits. Our research focuses on the mechanisms that maintain the Glu homeostasis in brain extracellular fluids and their role in the pathogenesis of neurodegenerative and malignant diseases. Our aim is to determine the impact of excess extracellular Glu levels and the various antiglutamatergic therapeutic strategies on the progression of the malignant and neurodegenerative diseases. We believe that a profound understanding of the glutamate signaling pathways may provide novel therapeutic opportunities for various CNS diseases.

Publications

Goldshmit Y, Banyas E, Bens N, Yakovchuk A, and Ruban A. Blood Glutamate Scavenger decreases excitotoxicity and combined with exercises reduces axonal degeneration, and promotes

Grants

2018 – 2020 Medical Research, Israel Defense Forces (IDF) “Blood glutamate scavenging as Novel neuroprotective treatment for spinal cord injury”.

2016 – 2019 Israel Science Foundation (ISF) Individual Research Grant and New Faculty Equipment, “Blood glutamate scavenging in the prevention of melanoma invasiveness”.

Dr. Miriam Theilla, Ph.D.
Department of Nursing
Steyer School of Health Professions
Sackler Faculty of Medicine

E-mail: miriamt@post.tau.ac.il

The Effect of Fish Oil Enriched Diet on Wound Healing Processes in ICU Patients

Positions
Lecturer, Sackler Faculty of Medicine

Research
Wound healing is the complex, multi-stage response to tissue injury. This physiologic repair response requires a dynamic temporal and spatial interplay of several cell types, including local parenchymal and mesenchymal cells as well as resident and recruited inflammatory cells. N-3 Fatty acids are recognized as influencing both wound healing and immunity. Our group studies the impact and the specific role of fish oil- and micronutrient enriched formulae on the healing of pressure ulcers and on immune function mediated through a modulation of expression of adhesion molecules in critically ill patients.

Our results show a reduction in inflammation levels of C – reactive protein concentrations and increasing levels of adhesion molecules preceding the subsequent reduction in ulcer severity of critically ill patients.

The formulae may ameliorate the inflammatory response, both in magnitude and duration, probably mediated by an effect on adhesion molecule expression. by promoting the transition from an inflammatory to reparative stage of wound healing.

Publications

Itzhaki M, Bluvstein I, Peles Bortz A, Kostistky H, Bar Noy D, Filshtinsky V, Theilla M. Mental health nurse’s exposure to workplace violence leads to job stress, which leads to reduced professional quality of life. Front Psychiatry. 2018;9:59.

Chapters and Reviews

Public Health
Dr. Bruria Adini, Ph.D.
Department of Emergency Management & Disaster Medicine, School of Public Health
Sackler Faculty of Medicine

Emergency & Disaster Management

Positions
Senior Lecturer, Faculty of Medicine
Chair, Department of Emergency Management & Disaster Medicine
Chair, Teaching Committee, Dept of Emergency Management & Disaster Medicine
Member, Board, World Association of Disaster & Emergency Medicine (WADEM)

Research
Our research agenda encompasses a wide array of topics relevant to emergency & disaster management and medicine including perceptions of the public and the first responders concerning varied threats; psycho-social characteristics of response; evaluation of emergency readiness; factors that impact on personal and community resilience; effectiveness of risk communication and its effect on the population behavior; efficacy of humanitarian action; impact of innovative methods of risk management, and more. Methodologies for cross-border response to natural disasters are proposed and their effectiveness investigated; utilization of conventional and new (social) media during disasters is studied within the responders’ realm and between them and the public. “Wisdom of the crowd” (involving the public) in enhancing response capacity is researched.

Publications

Epidemiology of Infectious Diseases

Positions

Professor of Epidemiology and Preventive Medicine
Incumbent of Diana & Stanley Steyer Chair of Cancer Prevention and Control
Director, Stanley Steyer Institute for Cancer Epidemiology and Research
Director, Tel Aviv University Center for the Study of Bioterrorism
Member, Executive Committee (Hamerakezet), Tel Aviv University Senate
Chair, Middle East Consortium for Infectious Diseases Surveillance (MECIDS)

Research

Emerging Infectious Diseases, Vaccinology

1. The study of risk and protective host factors against enteric diseases; identification of correlates of protection related to the immune response and host microbiota; development of enteric vaccines
2. Development of laboratory-based surveillance methods for enteric diseases
3. Seroepidemiology of vaccine-preventable diseases to monitor the immune status of the Israeli population
4. The study of the association between selected infectious agents (e.g., Helicobacter pylori, Human Papilloma Virus) and cancer.

Publications

Behar A, Fookes MC, Goren S, Thomson NR, Cohen D. Whole genome analysis to detect potential vaccine-induced changes on Shigella sonnei genome. Vaccine. 2015;33:2978-83.

Reviews

Grants

2017-2019 Ministry of Agriculture, Development of a New vaccine Against Brucellosis

2018-2019 Connecting Organizations for Regional Disease Surveillance (CORDS), PI: InterNetwork Project on “Digital event information and data collection at community-level in cross-border areas”

2018-2019 Bill and Melinda Gates Foundation PI: Extended Shigella Vaccine Immunogenicity Studies
Aging and End of Life

Positions
Professor, Department of Health Promotion, Sackler Faculty of Medicine
Director, Minerva Center for the Interdisciplinary Study of End of Life
Dr Igor Orshtein Chair for Research in Aging

Research
Health and Mental Health Promotion in older persons:
• Preventing loneliness and social isolation in older persons
• Promoting physical activity in old age
• Age segregation and integration in society
• Methodologies for alleviating memory difficulties
End of Life
• Delineating end of life as a life stage
• Encountering the gap between the good death and the usual death
• Dementia
 – Understanding symptoms and behaviors in dementia
 – Improving dementia care
• Promoting dignity at the end of life

Publications

Cohen-Mansfield J, Skornick-Bouchbinder M, Hoshen M, Brill S. The relationship between health services standardized costs and mortality is non-linear: Results from a large HMO population. Health Policy. 2017;121:1008-1014.

Chapters

Grants
The Effect of Physical Activity and Exercise Interventions on Cardiometabolic Health

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
The physiology response to exercise is complex, highly variable, and involves a myriad of adaptive responses in multiple organ systems. The lab is mainly interested in studying the health benefits of exercise on disease prevention and the improvement of physical health, fitness, and muscle strength. Our research focuses on better understanding the extent, intensity, and type of physical activity needed to improve health under a wide range of clinical conditions in a personal manner using cutting-edge technologies, including magnetic resonance imaging (MRI) for assessing muscle damage and adipose tissue distribution, body composition, as well as markers of cardiometabolic health. Our multi-disciplinary research in the area of physical activity and the public health domain, using a large-scale randomized clinical trial design is aimed to develop, test, and implement lifestyle interventions that promote health and prevent human diseases. We also collaborate with other research groups to better understand the mechanism underlying the acute and chronic adaptive response to exercise training.

Publications

Muscle volume and integrity assessment using diffusion tensor imaging (DTI), a sensitive magnetic resonance imaging (MRI) technique used to assess subclinical signs of muscle injury. DTI assessment is predicated on cell membranes and other structures constraining water diffusion. Water movement is evaluated by determining the three orthogonal directions of water diffusion, called eigenvectors, and their intensities, called eigenvalues. An axial slice of the middle hip was used to determine DTI in four muscles: Light blue- rectus femoris; Dark blue- vastus lateralis; Green- adductor magnus; and Pink- semitendinosus.

*equal contribution.

Cardiovascular Disease Epidemiology

Positions
Professor, Sackler Faculty of Medicine
Adjunct Faculty, Health Sciences Research, College of Medicine, Mayo Clinic, Minnesota
Chair, Dept. of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine

Research
Our research covers a wide array of topics related to the epidemiology of cardiovascular diseases. These include risk factor and biomarker evaluation, secular trend analysis, and outcomes research. We have a particular interest in assessing long-term prognosis after acute myocardial infarction. This type of investigation usually combines data from multiple sources, including interviews and questionnaires, laboratory measurements involving blood specimens, GIS-derived environmental data, interviews and questionnaires. We are also interested in methodological aspects involved in conducting and interpreting observational studies.

Publications

Effect modification of the association between chronic exposure to PM2.5 and post-myocardial infarction mortality by frailty status. A positive dose-response relationship between chronic exposure to PM2.5 and mortality is evident among frailer participants only. PM2.5, particulate matter ≤2.5 μm in diameter. Figure created by authors from data in Gerber et al. *J Am Coll Cardiol*. 2014;63:1698–99.

Reviews & chapters

Grants

Prof. Uri Goldbourt, Ph.D.
Department of Epidemiology and Preventive Medicine
Sackler Faculty of Medicine

Investigating Cardiovascular Risk Factors and Outcomes, Predictors of Frailty and Declining Cognitive Function

Positions
Professor Emeritus, Sackler Faculty of Medicine
Honorary Member, Israeli Heart Society
Founding Chairman, Israel Heart Society Working Group on Epidemiology and Prevention

Research
The pioneering large scale epidemiological study named “The Israeli Ischemic Heart Disease project” (IIHD project) was initiated in the Jerusalem, Tel Aviv and Haifa areas in 1963. Over the years three stages of extended mortality follow up, in 1978, 1986 and 2011, as well as a “dementia phase” among survivors in 2000, Charison morbidity index as of 2002 and cancer follow up though 2011 were added. Results of IIHD laid the foundation for the teaching of epidemiology of CVD in Israel. BIP (Bezafibrate Infarction Prevention) was the most extensive locally planned and executed in Israeli Cardiology, involving over 15,000 screened patients and 3090 original participants with coronary heart disease (CHD)

Current involvement:
Dementia and multiple morbidity, over the last years of life, in the above mentioned cohort (IIHD) and several research groups.
Epidemiology of stroke.
Epidemiology of cognitive decline and frailty among the BIP survivors (two recurrent examinations)
Cancer incidence in the IIHD.
Vegan health profile, associated putative risk lowering and cost-benefit factors.

Publications
of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385:1397-405

Dr. Israel Halperin Ph.D.
School of Public Health, Sackler Faculty of Medicine
Sylvan Adams Sports Institute

Enhancing Performance and Motor Learning Through Coaching Strategies

Position
Senior Lecturer

Research
We study ways to optimize coaching interventions rooted in motor learning and sports science to enhance physical performance, increase learning processes of new motor skills and motivation to exercise, and to reduce sport injuries. I take a special interest in the effects of directing one’s attention to a particular aspect of a motor task: self-observation techniques, including mirrors and videos of motor task execution, and the restructuring of training and rehabilitation programs in view of individual preferences. On the one hand, we study athletes to improve performance in their related disciplines, and on the other hand, we study sedentary and injured populations to probe public health issues.

Publications

Reviews

Reproductive Epidemiology

Positions
Professor, Sackler Faculty of Medicine
Chair, Teaching Committee, School of Public Health
Director, National Registry for In Vitro Fertilization (IVF) Treatments

Research
Our research agenda is focused on women and children’s health with a special emphasis on reproductive epidemiology in multi-center and national and international studies related to health policy. We investigate the short- and long-term effects of exposure to assisted reproductive technologies in women and children including obstetric outcomes, congenital malformations, cancer and motor and cognitive development. In addition, we evaluate the role of various predictive factors that might influence the outcome of IVF treatments including age, environmental exposures and stress. Our research involves population-based studies in which we integrate epidemiological and biostatistical methods to analyze data from multiple sources including interviews, medical records’ data, biosamples and national registries.

Publications
Riskin-Mashiah S, Riskin A, Bader D, Kugelman A, Boyko V, Lerner-Geva L, Reichman B. In

Frankenthal D, Hirsh-Yechezkel G, Boyko V, Orvieto R, Ron-El R, Lerner-Geva L, Farhi A. The effect of body mass index (BMI) and gestational weight gain on adverse obstetrical outcomes in pregnancies following assisted reproductive technology as compared to spontaneously conceived pregnancies. Obesity Resaech and Clinical Practice, 2018.

Helicobacter pylori, Enteric Infections and Their Role in Health and Disease

Positions
Associate Professor Sackler Faculty of Medicine

Research
Helicobacter pylori infection is acquired during early childhood. It causes chronic gastritis, which mostly remains asymptomatic; however in a small portion of the infected people H. pylori causes peptic ulcers and gastric cancer. Our research focuses on the role of H. pylori in extragastric diseases such as iron deficiency anemia, cognitive function, and diabetes mellitus. Epidemiology of enteric infections in various populations consists an additional main research area in our group.

Our research involves population-based studies in which we integrate various epidemiological and biostatistical methods, as well as biological markers assessed by immunological and microbiological tools.

Publications

Chapters and Reviews

Grants

2016-2019 BSF (PI with Prof. MM Levine, USA)

2018-2019 Stlotz Fund, Sackler Faculty of Medicine, Tel Aviv University

2018-2021 Israel National Institute for Health Policy and Health Services Research
Positions
Senior Lecturer, Sackler Faculty of Medicine and Raymond & Beverly Sackler Faculty of Exact Sciences

Research
In our research we aim to tackle major topics in infectious diseases and how they are affected by environmental factors, using computational tools and insights from evolutionary and ecological processes. In particular, we are interested in changes of antibiotic resistance frequencies, due to antibiotic misuse, and in the effect of climate on the dynamics of mosquito-borne diseases. We use an interdisciplinary approach that combines mathematical models and statistical methods to understand the underlying dynamics of the questions at hand, and to predict the outcomes of possible interventions.

Publications

Obolski, U., Dellus-Gur, E., Stein, G. Y., & Hadany, L. 2016. Antibiotic cross-resistance in the lab and

Spatiotemporal characterization of index P, representing the potential of Dengue transmission across Brazil. (a) Map presents the mean index P per pixel. Values coloured according to scale on the right. (b) Using the estimated index P of each pixel, with 12 points representing months, the month with highest index P is identified. Each pixel is coloured according to that month, with the colour scale represented in a circle.

Thompson, R. N., Thompson, C. P., Pelerman, O., Gupta, S., **Obolski, U.** 2019. Increased frequency of travel in the presence of cross-immunity may act to decrease the chance of a global pandemic. *Philosophical Transactions of the Royal Society B*, 374(1775), 20180274.

Epidemiology of Parkinson’s Disease and Environmental Epidemiology

Positions
Associate Professor Sackler Faculty of Medicine
Chair, School of Public Health Seminars

Research
Our research focuses on two main fields: 1. Neuro-epidemiology, and 2. Environmental epidemiology, with a special interest in methodological issues.

In neuro-epidemiology, we study the epidemiology of neuro-generative diseases. Specifically, we follow up and investigate a large cohort of patients with Parkinson’s disease on disease burden, etiology, early-markers and co-morbidity. The cohort was derived through a drugs-purchased dataset that was linked to clinical and administrative databases.

In the area of environmental epidemiology, we study the short term effects of air pollution on adverse health outcomes such as birth-defects, emergency-room visits and mortality. We also evaluate vulnerability to air pollution hazards of specific sub-groups such as subjects with diabetes. In light of global climate changes, we study the short-term effects of ambient temperature on mortality and on the occurrence of food-borne diseases. These studies involve a temporal/spatial analysis.

Publications

Improving Public Health, and Control Tobacco Use and Exposure

Positions
Associate Professor Sackler Faculty of Medicine
Chair, Dept. of Health Promotion, School of Public Health
Affiliated Faculty, Harvard Global Center for Tobacco Control
Appointed Member, Israel Public Committee for Reduction of Tobacco Use and Damage
Temporary Adviser, European Advisory Council on Health Research (EACHr), World Health Organization
External Steering Committee Member, World Health Organization EvipNet

Research
Our primary goal is to contribute to public health, at the national and global levels, through conducting research, advancing public health research methods and evidence-based health policy, and teaching and mentoring students. We focus on methodological issues of public health and health promotion research, including understanding and improving the evidence base for public health policy, systematic reviews, and rigorous evaluation of health promotion interventions.

Our main substantive research interest is tobacco, one of the major public health problems of our time. This includes the epidemiology of tobacco use, exposure, and harm, with a focus on the Israeli context; and development and evaluation of intervention programs and strategies to reduce tobacco use and exposure at the individual, local, and national levels. Specific research projects include: monitoring and evaluation of the recent governmentally-approved National Tobacco Control Plan; development of an intervention to protect young children from tobacco smoke exposure; understanding tobacco use initiation among youth; research on changes in tobacco use during Israeli military service, the study of smoking cessation among adults, research on the exposure of the Israeli public to tobacco smoke, and understanding public and policy-maker attitudes towards governmental intervention for tobacco control.
Publications

Reviews and Chapters

SUMO protease localization in the mitochondrial matrix and nucleus of C. elegans body wall muscles – Assaf Tsur, Amir Sapir and Limor Broday.
Molecular Analysis of Ubiquitin and SUMO Pathways in the *C. elegans* Model

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
Protein modifications by ubiquitin and ubiquitin-like proteins are essential for many cellular regulatory mechanisms. De-regulation of such processes is a cause for many human diseases. The main objective of our research is to understand, at a mechanistic and molecular level, how these processes are regulated. We use the nematode *C. elegans* as a model system to analyze various elements of the ubiquitin and ubiquitin-like system.

Current lab projects:
- Regulation of morphogenetic processes by SUMO (small ubiquitin-like modifier)
- The role of E3 ubiquitin ligases in normal development and under cellular stress conditions

Publications

Reviews

Carvalho CA, **Broday L.** Game of tissues: How the epidermis thrones *C. elegans* shape. *J Dev Biol.* 2020;8(1).

(A) Organization of the *C. elegans* epidermal intermediate filament protein IFB-1 in circumferential bands in wild-type animal.
(B) Abnormal filaments and formation of inclusions in smo-1 deleted worms.
Genetic and Hormonal Regulation of Bone Metabolism

Position
Associate Professor, Sackler Faculty of Medicine
Chair, Department of Anatomy & Anthropology

Research

Genetics: Our laboratory focuses on the genetic and hormonal regulation of bone remodeling, microarchitecture and strength. These traits have a high degree of heritability, and one aspect of our research is to characterize new genetic determinants of bone remodeling as well as elucidate the mechanism of action of selected genes. Our GWAS confirmed the role of AVP (vasopressin) and OXT (precursor of oxytocin) in bone and identified for the first time Rhbdf2 as a significant determinant of bone structure.

Erythropoietin: Epo is the main hormone that regulates blood cells production. We investigated the role of Epo in bone remodeling in general and on the bone cells in particular.

Inflammation-induced osteolysis: Today, most dental implants undergo surface roughening to enhance osseointegration. However, ultrasonic scaling performed routinely for oral hygiene releases particles from titanium implants. We found that these particles stimulate the secretion of inflammatory cytokines and induce osteoclastogenesis in vitro and in vivo.

Gut microbiota: The variety and number of bacteria in our gastro-intestinal tract is greater than our own genome. Studying their roles in regulating physiological and pathological processes is in the forefront of biomedical research. In a collaboration with the Weizmann Institute and the Technion, we are conducting a large-scale study aimed at identifying the bacterial strains that affect or benefit our bone density.

Cannabinoids: Cannabis-derived and endogenous cannabinoids are important regulators of bone cells. We investigate the beneficial actions of cannabinoids in bone fracture healing, osteoporosis, Osteogenesis Imperfecta, and inflammation-induced bone destruction.

Recently, we started investigating a possible role for endocannabinoids in the regulation of immune cells by bone cells.

Regulation of bone turnover and microstructure by genetic determinants, inflammation, sex hormones and cannabis/endocannabinoids.
Publications

Sackler Faculty of Medicine Research 2020 275 Reproduction, Development and Evolution

Grants

2017-2021 Israel Science Foundation
2018-2021 German-Israeli Foundation (GIF)
2019-2021 Emerson Collective
2019-2022 Israel Ministry of Science and Space
2019-2020 Gassner Fund
2020-2021 Israel Cancer Association (with Drorit Neumann)
2020-2022 Dotan Research Center (with Drorit Neumann)
Evolutionary Medicine, Paleopathology and Bio-history

Position
Professor Emeritus
Director, The Shmunis Family Anthropology Institute
Professor, Sackler Faculty of Medicine
Head, Dan David Laboratory for the Search and Study of Modern Humans
Director, Tassia and Joseph Meychan Chair for the History and Philosophy of Medicine

Research

Biohistory: The social and biological impact the transition from foraging and hunting to farming had on human populations. Although a rapid event in human evolution, the ‘agriculture revolution’ was the most significant cultural process in human history, something that forever changed the face of humanity (culturally and biologically). Unlike many other paleoanthropological studies, we adopt an ‘osteobiographic’ approach, i.e., life history as recorded in bones. The study is based on several hundreds of Natufian and Neolithic skeletons (large portion of them were excavated by the team), housed at Tel Aviv University. The study, besides traditional methods, applies new methods and technologies as CT, Micro-CT, SEM, Histochemistry, aDNA, Isotope analyses.

Human evolution: Searching for the origin of anatomically modern humans. The origin of anatomically modern *Homo sapiens* and the fate of the Neanderthals have been fundamental questions in human evolutionary studies for over a century. New fossils excavated at Qesem, Misliya and Manot caves, may shed light on the above questions.

Evolutionary medicine: This section is divided into three topics: 1) Establishing valid methods for identifying diseases in ancient bones, 2) Identifying diseases in the fossil record, 3) Evolutionary perspective of current diseases.

Publications

3D reconstruction of the annulus fibrosus, MRI study. Disc herniation project.

Teeth from Qesem cave 300,000 years. Modern human origin project.

Hyperostosis frontalis interna (HFI) identified via CT and direct observation (skeletal).

Reviews

Grants

2018-2019 Leakey Foundation
2018-2019 Wenner Gren Foundation
2016-2019 Dan David Foundation
Theoretical Biophysics of Membranes and Cytoskeleton

Position
Professor, Sackler Faculty of Medicine
Joseph Klafter Chair in Biophysics

Research
We model the mechanisms of shaping and remodeling of intracellular membranes by specialized proteins that includes generation of large membrane curvatures, membrane fission and fusion. Our goal is to reveal the common mechanistic themes in the function of membrane shaping proteins acting in different intracellular systems. In this way, we hope to be able to understand whether every stage of membrane shaping needs a special protein or the same protein machinery can enable both membrane curvature generation and fission and/or fusion. Specifically, we model the action of BAR domain proteins, Epsins and Dynamins in endocytosis, Reticulons and their partners in shaping the Endoplasmatic Reticulum, and ESCRT-III complexes in fission of cytokinetic tubes.

We model the mechanisms underlying the dynamic organization of the actin cytoskeleton and the system of cell adhesion in polarizing and moving cells. Our major goal is to understand the mechanosensitivity of the cytoskeletal systems and its role in the system temporal rearrangements and steady-state structures.

Computational results for membrane curvature generation by amphipathic N-terminal helices of N-BAR domains, ENTH domains and small G-proteins.

Computational modeling of lamellipodium boundary formation resulting from actin-focal adhesion interaction (left), the phenomenon observed in moving fibroblasts (right, courtesy of A. Verkhovsky).
Publications

Reviews

Laboratory for Bio-History and Evolutionary Medicine

Position
Lecturer

Research
Inter-disciplinary laboratory focusing on two major topics: evolutionary history of anatomical systems and their impact on current population health, and reconstruction of ancient populations’ daily life, based on their skeletal remains, with emphasis on the interaction between genetic and socio-cultural factors.

The bio-history study of ancient populations is based on both morphological and molecular (aDNA) methods.

Reconstructing past population daily life: revealing daily activities of prehistoric and historic populations is a challenging task considering the evidence at hand (bones). Nevertheless, bones may furnish us with information otherwise not available, e.g., division of labor, social stratification, intensity of physical activities, health and nutrition, demography (sex ratio, mortality, family size, etc.). Beside traditional methods, the studies are being carried out utilizing advanced 3D analysis methods based on CT, micro-CT and 3D surface scans. The accompanied genetic studies, in addition to supporting and confirming observed pathologies in the bones, i.e., identifying pathogens suspected to cause diseases such as TB, leprosy, etc., also contribute to questions related to populations’ migration from and to the Southern

Hyperostosis frontalis interna (HFI) identified via CT and direct observation (skeletal).

Geometric-morphometrics analysis of the proximal femur.

Femoral mid-shaft cross-sectional analysis of hunter-gatherer (Natufian), dated to ~15,000 years ago.
Levantine and questions related to population structure (e.g., extended family) and biological relationships between the local populations.

The evolutionary medicine studies focus on the quest for evolutionary explanations for common diseases found in modern human populations. We estimate the benefits and costs behind anatomical changes through evolution in order to better understand how compromised designs are being developed, and their outcomes (i.e., diseases).

Publications

Grants
2016-2019 ISF Equipment Grant
2018-2019 Leakey Foundation, National Geographic Foundation
2018-2019 The Wenner-Gren Foundation
2018-2021 Broad-ISF
Reproduction in Animal Models and in Humans

Positions
Professor Emeritus, Sackler Faculty of Medicine

Research

Our research focuses on Reproductive Physiology in animal models and in humans. The current research directions investigated in the laboratory are:

- The role of Fyn kinase, member of the Src family kinases, during meiosis and early events of oocyte activation, as well as in cancer cells (Figure -left panel).
- Fertility preservation – the signaling pathway leading to apoptosis in aging oocytes and in oocytes exposed to chemotherapeutic treatments and potential protectants (Figure -right panel).
- Regulation of angiogenesis in reproductive organs by Pigment epithelium derived factor (PEDF) and treatment of reproductive angiogenic-related pathologies.

Various research methods are routinely used in the laboratory, ranging from in vivo animal studies and cells cultures to an array of protein methodologies such as western blotting, immunohistochemistry, molecular biology techniques as well as cellular and molecular imaging.

Publications

Left panel- Human oocyte stained for DNA (blue); cytoskeleton (tubulin; red); protein (Fyn kinase; green). Arrow – Germinal vesicle (genetic material); C- Cytoplasm. Confocal microscopy. Right panels -Section of sperm producing tubules in mouse testis before (left) and after treatment with chemotherapy (right). The drug led to loss of sperm (S) production. DNA (blue); protein (DAZL; red). Immunofluorescent microscopy.

Reviews

Grants

2020-2021 Ministry of Health Grant
Positions
Associate Professor, Sackler Faculty of Medicine
Director, Sackler Cellular and Molecular Imaging Center (SCMIC)

Research
Our main interest is in understanding how mechanical forces are generated by cells and how cells use these forces to change shape and move, as happens during cell division, cell migration and tissue morphogenesis. We focus on distinct cellular structures that mediate cell adhesion and contractility: cell-matrix and cell-cell junctions and the actomyosin cytoskeleton. Together, these structures are responsible for the dynamic control of cell and tissue shape during development and homeostasis and their mis-regulation is associated with various diseases.

We take a multi-scale approach in our investigations, from single proteins to an entire organism, and employ a variety of tools, including genetic engineering, proteomics, biochemistry and bioinformatics, but primarily relying on live imaging with fluorescence microscopy.

Our findings, both in mammalian cells and in the nematode *C. elegans*, are defining the protein network regulating cell adhesion and contractility in vivo and elucidating molecular mechanisms of mechanosensing and mechanotransduction.

Publications

Actomyosin-generated forces shape cells and tissues: (A) A contractile actomyosin network at the cortex of a *C. elegans* early embryo. It is essential for cell polarization and division. (B) Actin and myosin self-organize into arrays of parallel stress fibers in a REFS2 fibroblast. They are required for cell spreading and adhesion. (C) The germline of *C. elegans*, highlighted by a membrane marker, is like an assembly line for embryos. Actomyosin contractility is essential for maintaining germline architecture and for moving oocytes and embryos along.

Reviews

Grants

2017 –2020 Israel Science Foundation Research grant: Mechatrontransduction in contractile tubes: using the C. elegans spermatheca as a model to study the regulation of RHO-1- and Ca2+-dependent actomyosin contractility in response to stretching.

2017 –2020 Israel Science Foundation Equipment Grant

2018-2020 Israel Cancer Research Fund Acceleration grant: Elucidating the role of the upstream partner in oncogenic ALK gene fusions

2018-2022 United-States – Israel Bilateral Science Foundation: Elucidating the role of ERM proteins in cytoskeletal orientation in a contractile tissue

Ionizing radiation induced γH2AX foci in the DNA of human hematopoietic stem cells – a way to study genome stability regulation in stem cell cells. Immunofluorescent microscopy image – Shahar Blechonski, Michael Milyavsky.
Molecular Biology of Aging

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
Aging is the leading risk factor for most causes of death in the western world, including cardiovascular disease, cancer and diabetes. The aging process can be slowed down, as was shown in multiple model organisms. This slowdown is accompanied by delayed onset of multiple common chronic diseases and an inhibition of tumorigenesis. However, translating these findings to humans is not straightforward. We have developed a method to identify the protein composition of organelles and subcellular structures directly from primary tissues. We apply this method to study how subcellular structures, like the mitochondria and the nuclear envelope, that have key roles in the aging process, change with age. Our lab is located at the Schools of Dental medicine, thus enabling us the access to fresh oral tissue samples from live and consenting participants. By tracking the aging process at a subcellular level, we will gain insights into human aging and highlight tissue specific processes.

Publications

Fig. 1: Nuclear envelope labeling in primary human muscle samples. The shape of the nuclear envelope in primary muscles deviates from the classical view of a round smooth circle. Similarly, significant changes in protein content were seen between primary muscle sample and cell culture.
Musculoskeletal and Adipose Stem Cells Lineage Fate and Usage in Regenerative Medicine

Position
Professor, Sackler Faculty of Medicine
Head, Marian Gertner Institute for Medical Nanosystems

Research
Our interest is to follow the differentiation of mesenchymal stem cells and their lineage fate. We study the balance between skeletal stem cells and the adipose fate lineage in vitro and vivo in various animal models in health and disease. The role of stem cells function is followed at the cellular and molecular biology levels. In silico characterization, using bioinformatics of genes profiling and identification of biomarkers networks, allow is to identify markers for stem cells.

In recent projects we have shown that the cell niche affects their activity from factors secreted and the effect of extracellular matrix that play a role in the stem cells activation and function under normal physiology, diabetes and with aging. The ultimate goal of the research is to study how to improve the stem cells functionality.

Such knowledge will provide novel approaches to combat skeletal changes or fat tissue function due to aging or change in metabolic conditions. The use of stem cells is also developed towards tissue regeneration along with development of novel collagen-based-scaffold.

Research methods used include bioinformatics, gene cloning, qRT-PCR, cell biology analysis imaging techniques of immunofluorescence, scanning electron microscopy and biochemistry. Nanotechnology and nano-scaping combines the cell fate differentiation with multidisciplinary approaches for the development of new platforms for cell analysis.

Publications

Reviews
Benayahu D. Wiesenfeld Y, Sapir-Koren R. How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate? J Cell Physiol. 2019.

Grants
2016-2019 Ministry of Science Cooperation, Jointly with Prof. R. Haj-Ali
2016-2020 Israel Science Foundation, Jointly with Prof. A. Gfen
Cytoskeletal Regulation of Epidermal Stem Cells

Position
Senior Lecturer, Sackler Faculty of Medicine
Head, Graduate School International Program
Director, Biomed@TAU Research Hub, Developmental Biology

Research
Our laboratory studies how cytoskeleton-derived signals control stem cell’s ability to give rise to a functional tissue during development, to maintain it throughout life and repair it upon wounding.

The actomyosin cytoskeleton is a complex cellular structure that plays a role in many biological processes. Classic studies established its role in cell structural organization. However, new studies demonstrate that the cytoskeleton plays a major role in regulatory processes that control signal transduction, gene expression and stem cell lineage specification.

Our laboratory uses the skin epidermis as its main model system. Projects in the lab explore both skin development and skin common diseases such as cancer and psoriasis. In addition to classic genetic tools and in vivo models we also use state of the art technology to manipulate stem cells in utero. Genome wide analysis of gene expression, quantitative digital microscopy and a variety of molecular and cellular methods are all commonly used in our lab.

Publications

Left hand side: We use state of the art in utero injections of lentivirus (H2B-GFP+ cells in the epidermis) to manipulate gene expression in epidermal stem cells/progenitors early in embryonic development, before cell fate specification.

Right hand side: Whole mount image of embryonic epidermis showing an early mitotic cell and its interphase neighbors in planar view. Note the dramatic differences in cell shape. We demonstrated that mitotic rounding is important for cells ability to orient their spindle and undergo asymmetric cell division.

Reviews

Grants

2015-2020 Israel Science Foundation (ISF) Grant
DNA Damage Response in Normal and Leukemia Hematopoietic Stem Cells

Position
Senior Lecturer, Sackler Faculty of Medicine

Research
Accumulation of unrepaired DNA damage in hematopoietic stem cells (HSC) is associated with bone marrow failure and accelerated leukemogenesis. Our laboratory aims to understand how HSC cope with DNA damage to preserve normal blood regeneration and to limit the risk of leukemogenesis. In addition, we strive to discover how leukemia stem cells escape therapy and try to devise strategies to prevent this from happening. To address these questions we study DNA damage signaling and its outcomes in highly purified human normal and leukemia cell subsets. We employ flow cytometry, immunofluorescent and biochemical analyses, lentiviral gene transfer-mediated functional screens, expression/microRNA profiling, clonal in vitro assays and, most importantly, in vivo repopulation mouse assays of human normal HSC and leukemia-initiating cells.

Publications

Reviews

Grants

2014-2019 Israel Science Foundation (ISF) Grant: Elucidation of DNA damage response mechanisms in normal and malignant hematopoietic stem cells.