Sections

Cancer 6
Cardiovascular System 49
Digestive System 65
Endocrine Disease 98
Genetic Diseases & Genomics 117
Immunology & Hematology 140
Infectious Diseases 152
Musculoskeletal Disorders 159
Neurological & Psychiatric Diseases 170
Ophthalmology 207
Public Health 220
Reproduction 228
Stem Cells & Regenerative Medicine 234
Renal System 245

Disclaimer: Manuscripts are not updated

Cover images (from bottom left, clockwise):

Image 1: Staining of a novel anti-frizzled7 monoclonal antibody directed at tumor stem Cells. Credit: Benjamin Dekel lab.

Image 2: Growing adult kidney spheroids and organoids for cell therapy. Credit: Benjamin Dekel lab.

Image 6: Cardiomyocyte proliferation in newborn mouse heart by phosphohistone 3 staining (purple). Credit: Jonathan Leor.

© All rights reserved
Editor: Prof. Karen Avraham, Alana Sisam
Graphic design: Michal Semo Kovetz, TAU Graphic Design Studio
July 2023
The Faculty of Medicine

The Faculty of Medicine is Israel’s largest medical research and training complex. The Faculty of Medicine of Tel Aviv University (TAU) was founded in 1964. Research at the Faculty of Medicine is multidisciplinary, as scientists and clinicians combine efforts in basic and translational research. Research is conducted in the laboratories on the TAU campus, and in the clinical facilities affiliated to the Faculty. The Faculty of Medicine includes the School of Medicine, the School of Health Professions, the School of Public Health, and the School of Dental Medicine. Education takes place in all these schools and in the Graduate School of Medicine, School of Continuing Medical Education, the New York State American Program and the B.Sc. Program in Medical Life Sciences. This network of preclinical and clinical teams helps realize the ultimate goals of the research: the basic understanding of human pathophysiology and the prevention, diagnosis and treatment of disease. The research of clinical faculty members from the School of Medicine are featured in this research brochure.

The Faculty of Medicine engages in joint teaching and research programs with nearly every faculty at TAU, including the Wise Faculty of Life Sciences, the Sagol School of Neuroscience, the Edmond J. Safra Bioinformatics Center, the TAU Center for Nanoscience and Nanotechnology, and the Edmond J. Safra Center for Ethics, and multi-nationally with schools, hospitals and research centers throughout the world. The Faculty is known for research in the following areas: cancer biology, stem cells, diabetes, neurodegenerative diseases, infectious diseases and genetic diseases, including but not limited to Alzheimer's disease, Parkinson's disease and HIV/AIDS. Physicians in 181 affiliated departments and institutes in 17 hospitals hold academic appointments at TAU. The Gitter-Smolarz Life Sciences and Medicine Library serves students and staff and is the center of a consortium of 15 hospital libraries.

The student body is made up of 750 Israeli students enrolled in the 6-year M.D. degree program, 300 American and Canadian students enrolled in a 4-year M.D. program chartered by the State of New York and accredited by the State of Israel, and a 4-year program for Israeli students for the M.D. degree, with 260 students. Approximately 200 students study dental medicine in a six-year program where they are awarded the D.M.D. degree and another 2,000 students are enrolled in the health professions programs where they will earn degrees in Communications Disorders, Nursing, Physical Therapy and Occupational Therapy. The Graduate School for Advanced Studies trains approximately 800 masters and doctoral level students in the biomedical disciplines, with a special emphasis on a multidisciplinary approach and application of fundamental knowledge to important biomedical problems.

The Faculty of Medicine is led by the Dean, Prof. Karen Avraham; Associate Deans Prof. Rina Rosin-Arbesfeld, Prof. Eli Sprecher, Prof. Neta Erez, Prof. Anat Gafter-Gvilli, Prof. Ronen Zaidel-Bar, Prof. Benjamin Dekel and Assistant to the Dean, Ms. Michal Gilboa.
Table of Contents

Cancer
- Prof. Ad El, M.D. 6
- Prof. Nadir Arber, M.D., M.Sc., MHA 7
- Dr. Shiran Shapira, Ph.D. 10
- Prof. Osnat Ashur-Fabian, Ph.D. 12
- Prof. Iris Barshack, M.D. 14
- Prof. Yair Herishanu, M.D. 17
- Prof. Shai Izraeli, M.D. 21
- Dr. Yehudit Birger, Ph.D. 21
- Dr. Ben Zion Katz, Ph.D. 23
- Dr. Guy Lahat, M.D. 24
- Dr. Michael Peled, M.D., Ph.D. 26
- Prof. Zvi Ram, M.D. 28
- Dr. Ilan Volovitz, Ph.D. 28
- Dr. Yaacov Richard Lawrence, MBBS, MA, MRCP 30
- Dr. Uri Amit, M.D., Ph.D. 30
- Dr. Raya Leibowitz-Amit, M.D, Ph.D. 32
- Prof. Pia Raanani, M.D. 34
- Dr. Galit Granot, Ph.D. 34
- Prof. Amos Toren, M.D., Ph.D. 36
- Prof. Ran Tur-Kaspa, M.D. 39
- Dr. Romy Rubinstein, Ph.D. 40
- Dr. Orit Uziel, Ph.D. 40
- Prof. Ido Wolf, M.D. 43
- Dr. Tami Rubinek, Ph.D. 45
- Prof. Dr. Shani Shenhar-Tsarfaty, Ph.D. 61
- Dr. Shani Shenhar-Tsarfaty, Ph.D. 61
- Prof. Sami Viskin, M.D. 63

Digestive System
- Prof. Ziv Ben-Ari, M.D. 66
- Prof. Shomron Ben-Horin, M.D. 68
- Prof. Iris Dotan 70
- Dr. Keren Rabinowitz 70
- Dr. Sigal Fishman, M.D. 73
- Dr. Yael Haberman, M.D., Ph.D. 75
- Dr. Nitsan Maharshak, M.D. 79
- Prof. Raanan Shamir, M.D. 82
- Dr. Orith Waisbourd-Zinman, M.D. 82
- Prof. Oren Shibolet, M.D. 88
- Dr. Dror S. Shouval, M.D. M.M.Sc. 90
- Dr. Chen Varol, Ph.D. 94
- Dr. Dr. Shani Shenhar-Tsarfaty, Ph.D. 96

Endocrine Disease
- Dr. Galia Gat-Yablonski, Ph.D. 99
- Prof. Moshe Phillip, M.D. 99
- Dr. Yehuda Kamari, M.D, Ph.D. 102
- Dr. Alicia Leikin-Frenkel, Ph.D. 104
- Prof. Raoul Orvieto, M.D. 108
- Prof. Ilan Shimon, M.D. 113
- Dr. Hadara Rubinfeld, Ph.D. 113
- Dr. Hadara Rubinfeld, Ph.D. 113
- Prof. Amir Tirosh, M.D. Ph.D. 115

Genetic Diseases & Genomics
- Prof. Yair Anikster, M.D. Ph.D. 118
- Prof. Hagit Baris Feldman, M.D. 122
- Prof. Lina Basel-Salmon, M.D., Ph.D. 126
- Prof. Gidi Rechav, M.D., Ph.D. 130
- Prof. Annick Raas-Rothschild, M.D. 131
- Prof. Orit Reish, M.D. 133
- Prof. Eli Sprecher, M.D., Ph.D. 134
- Dr. Ofer Sarig, Ph.D. 134
- Prof. Sidi Yechezkel, M.D. 138
- Prof. Eli Schwartz, M.D. 138
- Dr. Avni Dror, Ph.D. 138

Cardiovascular System
- Prof. Ehud Grossman, M.D. 49
- Prof. Avshalom Leibowitz, M.D. 50
- Prof. Giris Jacob, M.D., D.Sc. 50
- Prof. Dror Harats, M.D. 52
- Prof. Gad Keren, M.D. 53
- Dr. Michal Entin-Meer, Ph.D. 54
- Prof. Ran Kornowski, M.D., FESC, FACC 56
- Prof. Jonathan Leor, M.D. 58
- Prof. Itzhak Shapira, M.D. 61

Cardiovascular System
- Prof. Ehud Grossman, M.D. 49
- Prof. Avshalom Leibowitz, M.D. 50
- Prof. Giris Jacob, M.D., D.Sc. 50
- Prof. Dror Harats, M.D. 52
- Prof. Gad Keren, M.D. 53
- Dr. Michal Entin-Meer, Ph.D. 54
- Prof. Ran Kornowski, M.D., FESC, FACC 56
- Prof. Jonathan Leor, M.D. 58
- Prof. Itzhak Shapira, M.D. 61
<table>
<thead>
<tr>
<th>Immunology & Hematology</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Ariel Tankus, Ph.D.</td>
<td>202</td>
</tr>
<tr>
<td>Prof. Avraham Weizman, M.D.</td>
<td>204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infectious Diseases</th>
<th>152</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Adiel Barak, M.D.</td>
<td>208</td>
</tr>
<tr>
<td>Dr. Aya Barzelay, M.D., Ph.D.</td>
<td>208</td>
</tr>
<tr>
<td>Prof. Irit Bahar, M.D.</td>
<td>209</td>
</tr>
<tr>
<td>Prof. Tami Livnat, Ph.D.</td>
<td>209</td>
</tr>
<tr>
<td>Prof. Anat Loewenstein, M.D.</td>
<td>211</td>
</tr>
<tr>
<td>Prof. Ygal Rotensteinich, M.D.</td>
<td>217</td>
</tr>
<tr>
<td>Dr. Ifat Sher, Ph.D.</td>
<td>217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Musculoskeletal Disorders</th>
<th>159</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Gabriel Chodick, Ph.D., MHA</td>
<td>221</td>
</tr>
<tr>
<td>Prof. Lizy Fireman, Ph.D.</td>
<td>223</td>
</tr>
<tr>
<td>Prof. Varda Shalev, M.D., M.P.A.</td>
<td>226</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neurological & Psychiatric Diseases</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Ronit Abir, Ph.D.</td>
<td>229</td>
</tr>
<tr>
<td>Dr. Yoel Shufaro</td>
<td>229</td>
</tr>
<tr>
<td>Prof. Ariel Hourvitz, M.D., MHA</td>
<td>231</td>
</tr>
<tr>
<td>Prof. Dror Meirow, M.D.</td>
<td>233</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stem Cells & Regenerative Medicine</th>
<th>234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Benjamin Dekel, M.D., Ph.D.</td>
<td>235</td>
</tr>
<tr>
<td>Dr. Shoshana Greenberger, M.D., Ph.D.</td>
<td>237</td>
</tr>
<tr>
<td>Prof. Dalit Ben Yosef, Ph.D.</td>
<td>240</td>
</tr>
<tr>
<td>Dr. Hadar Amir, M.D., Ph.D.</td>
<td>240</td>
</tr>
<tr>
<td>Dr. Yoav Mayshar, Ph.D.</td>
<td>240</td>
</tr>
<tr>
<td>Dr. Oren Pleniceanu M.D., Ph.D.</td>
<td>242</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Renal System</th>
<th>245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Benaya Rozen-Zvi, M.D.</td>
<td>246</td>
</tr>
</tbody>
</table>
Cancer

K562 leukemia cells responding to complement attack
(red-complement C9, green- Rab11, blue- mitochondria mitotracker)
Credit: Niv Mazkereth, Zvi Fishelson
Wound healing, Regeneration and Reconstruction, Skin Cancer

Positions
Associate Professor of Surgery (Plastic)
Head, Department of Plastic Surgery and Burns, Rabin Medical Center and Schneider’s Children’s Hospital
Founder and former president of the Israeli Society of Reconstructive Microsurgery
Founder Lyduss-Medical
Former Medical Director of Clalit Aesthetic
IDF Plastic Surgery Chief consultant

Research
Our group focuses on studies related to tissue regeneration and reconstruction, as well as clinical studies related to skin cancer.

We are demonstrating in a rodent model the important role of added vascularity to the local and systemic growth of cutaneous squamous cell carcinoma.

We re-visit the international guidelines for treating melanoma using AI and big data methods.

Using AI and machine learning, we are evaluating the role of diffuse reflectance spectrography in tumor margin identification.

We are developing a mathematical model to forecast the progresson of a chronic wound to marjolin’s ulcer.

Publications

Haik J, Ullman Y, Gur E, Ad-El D, Egozi D, Kruchevsky D, Zissman S, Biros E, Nir RR, Kornhaber R, Cleary M, Harats M. Advances in the use of electrospun nanofibrous polymeric matrix for dermal healing at
the donor site after the split-thickness skin graft excision: a prospective, randomized, controlled, open-label, multicenter study. *J Burn Care Res.* 2021

Grants

2017-2020 Ad El DD(PI), Mansour M, Daas Kamaal, Research project: A new microsurgical toolbox, Israeli Chief Scientist Fund

2018-2020 Ad El DD(PI), Mansour M, Daas Kamaal, A new microsurgical toolbox, AMIT Technion Fund for Medical Innovations

2018-2022 Cohn D, Ad-El DD, A development of a temperature sensitive smart polymeric dressing. NOFAR Fund

2018-2023 Levenberg S, Egozi D, Ad-El DD (clinical collaborator), Engineering composite tissues for facial reconstruction (VesselNet) – ERC Grant
Cancer Prevention Research Laboratory

Positions
Professor of Medicine & Gastroenterology
Yechiel and Helen Leiber Professor for Cancer Research
Chair, Israeli Gastroenterological Association
Head, Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center
Head, Promotion Center and Integrated Cancer Prevention Center Head, Djerassi Oncology Center
Former head, Cancer Research Center, Tel Aviv University
Former head, Dotan Center for Hemato-oncology, Tel Aviv University

Research
Laboratory of Molecular Biology – ICPC
The Integrated Cancer Prevention Center (ICPC) has diverse and broad experience in translational research focused on early detection, prevention and therapy of cancer, particularly in tumors of the gastrointestinal (GI) tract. The team is highly experienced in clinical studies, molecular epidemiology as well as in molecular and cell biology studies of cancer.

Currently, on-going researches at the ICPC focus on translational research, bridging between basic researches in the lab and clinicians and patients in the clinical center. The center has a long history of planning, developing, and conducting clinical trials, with a main focus on investigator-initiated and cooperative group trials investigating the activity of drugs for the prevention and treatment of colorectal cancer (CRC).

Basic research takes place at the Laboratory of Molecular Biology, headed by Dr. Shiran Shapira, a senior scientist and member of the academic staff at Tel Aviv University. Dr. Shapira devotes herself to cancer research in the fields of early detection, prevention, and cancer therapy. She possesses extensive experience in wide range of biology areas.
with focusing on cancer research, biochemistry, molecular biology, signal transduction, antibody engineering, protein expression and purification and gene delivery.

Research Team

Prof. Nadir Arber, MD, MSc, MHA, Head of ICPC; Dr. Shiran Shapira, PhD, Head of Laboratory; Dina Kazanov, MSc; Dr. Eliezer Liberman, MD; Ilana Bostenai, PhD student; Ahmad Fokra, PhD student; Sally Zigdon, MSc; Lina Tiklan

Projects

1. Early detection – development of new methods for the early detection of CRC and colorectal adenomas as well as other types of solid and hematological cancers. The tested samples taken from humans, blood and urine.

2. Prevention – Serving as the PI of several international, multicenter trials in the prevention of GI tumors, and in particular sporadic and familial CRC.

3. Identifying high risk subjects through molecular epidemiology – We have identified a new polymorphism in the APC gene (E1317Q), which is more common in Sephardic Jews and Arabs and is associated with a HR of ~4. When it is combined with another polymorphisms in the CD24 gene (V248A) the OR is 7.8.

4. Detection of new oncogenes that play a role in the multistep process of CRC carcinogenesis.

The research team at the Laboratory of Molecular Biology has been exploring, for several years, the hypothesis that CD24 is a potential oncogene in GI malignancies and may serve as a biomarker and target for the treatment of cancer and cancer-related chronic inflammatory disorders such as, inflammatory bowel diseases (IBD).

5. Treatment – Development of novel therapeutic strategies for cancer treatment with a main focus on immunotherapy using humanized anti-CD24 monoclonal Abs, immunotoxin and bi-specific adenoviruses and highly sophisticated viral vectors such as adenoviruses, lentiviruses and adenovassociated viruses.

7. Wound healing- CD24 may represent a novel clinical intervention strategy to accelerate the healing of wounds both acute and chronic injuries for patients. The proposed treatment may enable faster recovery from injuries while reducing the risk of infection, toxicity and other possible side effects.

Publications

Investigating Hormone Metabolism in Cancer

Positions
Associate Professor, Faculty of Medicine
Principle Investigator, Translational Oncology Laboratory, Sapir Medical Center, Kfar- Saba

Research
Our research deals with the role of thyroid hormones in cancer progression and on the development of a novel class of targeted cancer therapy. A set of small molecules that specifically block the thyroid-cancer axis were developed. Our research group is the first to show the potent elimination of various cancer types by these novel drugs.

Publications

Ovarian cancer cell proliferation and migration is enhanced by thyroid hormones.

Reviews

Grants

2015-2019 The Dotan Research Center, Tel Aviv University, Nuclear integrin in cancer

2018-2019 school of Medicine, Tel Aviv University, Selenoproteins in platelets
Investigating Markers of Inflammation and of Neoplastic Processes for Diagnosis and Treatment

Positions
Professor of Pathology
Vice Dean, Head of School of Medicine, Faculty of Medicine, Tel Aviv University
Head, Department of Pathology
Co-director, Tumor Tissue Bank, Molecular Diagnostic Service, Precision Medicine Project (diagnostic service), Digital Pathology Project, Sheba Medical Center, Tel Hashomer

Research
The profession of Pathology encompasses three main constituents: diagnostics, teaching and research. Within the department, description, processing and examination of the macroscopic specimen is performed by the doctors of the department. The specimens undergo histochemical staining. If necessary for the sake of diagnosis, additional specialized histochemical and immunohistochemical stains are carried out. Furthermore, the department executes other techniques that enable precise diagnosis such as: FISH, PCR, In-situ hybridization and Electron Microscopy visualization. The department delves in a large array of research projects with the cooperation of other departments within and outside of the hospital, and intrinsic research of the department itself.

The department encompasses a laboratory specific for histochemical staining, a laboratory for immunohistochemical staining that performs in-situ hybridization, as well as a laboratory for PCR, Electron Microscopy, FISH and for Molecular Pathology. Moreover, we are leading the tumor tissue bank of the Sheba Medical Center, and the Molecular Diagnostic Service of the Sheba Medical Center, using an advanced NGS platform for diagnostic and research purposes. We also perform on a routine and research basis immunohistochemical stainings and molecular methods for precision medicine and immunotherapy. Furthermore, the department includes an advanced system for photographing and processing both macroscopic and microscopic constituents, and leads the Digithal Pathology Project of the Sheba medical Center.

Another branch is that of independent research. One of the great accomplishments has been the conceptual implementation of the use of microRNAs to aid in the identification of different tissues and the application of this knowledge to identify metastases of unknown origin. In situ hybridization of microRNAs is an important methodology used in our research for studying the pathogenesis of inflammatory and of neoplastic processes. Another area of research in which the department is leading is the development of the technology of tissue microarrays. The department leads the investigation of inflammatory processes and lymphoproliferative tumors according to the production and study of heavy chain B lymphocytes within the tissue. In light of this investigation, the department received a number of important research grants.

Publications

Zayoud M, Vax E, Elad-Sfadia G, **Barshack I**, Pinkas-Kramarski R, Goldstein I. Inhibition of Ras GTPases prevents collagen-induced arthritis by reducing the generation of pathogenic CD4+ T cells and the hyposialylation of autoantibodies. ACR Open Rheumatol. 2020;2(9):512-524.

Investigating the Microenvironment Interactions and B-cell Receptor Signaling in Chronic Lymphocytic Leukemia

Positions
Associate Professor, Faculty of Medicine
Head, CLL Service, Tel Aviv Sourasky Medical Center
Secretary, Israeli CLL Study Group
Committee Member, Israel Society of Hematology

Research
We study interactions between the CLL cells and the tissue microenvironment and explore new aspects of the B-cell receptor (BCR) signaling in CLL cells. Our previous work characterized distinct in vivo gene expression signatures of CLL cells derived from the different compartments of blood, bone marrow and lymph nodes. Recently, we have shown that SLP76, an adapter protein of the T-cell receptor pathway, is ectopically expressed in CLL cells and mediates alternative signaling downstream of the BCR (Figure). Our research is aimed to discover novel targets of therapy of CLL. Our group is well experienced in performing cell biology assays, flow cytometry and image analysis, protein analysis and gene silencing in primary CLL cells, and is highly skillful in studying signaling in CLL cells.

Publications

Grants

2019-2023 Israeli Science Foundation (ISF), Dissection of the mechanism governing the B-cell receptor function in chronic lymphocytic leukemia as a key regulator of disease progression

2020-2021 Israel Cancer Association, Spatial and dynamics of early B-cell receptor signaling and actin cytoskeleton in CLL cells

2020-2021 Weizmann Institute-TASMC Joint grand-novel approaches to target the B-cell receptor signaling in CLL
Basic and Translational and Research of Childhood Malignancies and Leukemia

Positions
Professor, Faculty of Medicine
Chair, MD-PhD program

Research
We focus on patient-driven basic research into the pathogenesis of childhood leukemia and cancer. We harness advanced molecular and cellular biology technologies utilizing in-vitro and in-vivo models with the ultimate goal of improving the care of children with cancer.

Our research is divided into two major topics:
1. Basic, translational and clinical research of leukemia.
2. The role of SIL (STIL) protein in mitosis, centrosomal biology and cancer.

Cancer is the deadliest disease of children and leukemia is the most common childhood cancer.

Proliferation
Survival
Differentiation
Self Renewal

Mechanism?

Carboxypeptidase E (CPE), a novel Wnt inhibitor, is excluded from the colonic crypt bottom.
We are interested in the fundamental question how normal blood development is diverted into leukemia. What are the genetic and biochemical abnormalities that block cell differentiation, enhance proliferation and survival and confer the unique stem cell properties of self renewal to leukemia stem cells? We focus on chromosome 21 because of the mysterious association of leukemia with Down Syndrome. We utilize advanced genomic technologies, cell based assays of transformation of primary human and mouse stem cells, mouse models including transgenic, transplantation and explants of human leukemia. Our recent discoveries of the major involvement of the TSLP-IL7R-JAK2 pathway in leukemogenesis have lead to clinical trials with novel inhibitors of this pathway for high-risk leukemias in children and adults. The spread of leukemia to the brain is a major clinical problem as preventive therapy to the brain consisting of chemotherapy or irradiation causes long term side effects. We are therefore studying how leukemia cells spread to the central nervous system and developing mouse models to study this challenging problem.

We have discovered that SIL, a gene cloned from childhood leukemia, is required for centrosomal biogenesis and for survival of cancer cells. Targeting SIL by siRNA cause cancer cell death at mitotic entry in-vitro and in-vivo. Current research focuses on the fundamental role of the SIL protein in centrosome generation in normal and malignant cells and on developing approaches for its targeting for cancer therapy.

Publications

Reviews

Grants
2016-2019 German Israel Foundation
Development of B-Cell Malignancies

Positions
Senior Lecturer, Faculty of Medicine
Deputy Director, The Hematology Laboratory, Tel Aviv Sourasky Medical Center

Research
The focus of the research in the laboratory is on B-cell malignancies, their developmental processes, and the clinical significance of the malignant B-cells physiological and molecular phenotypes. We utilize a wide range of both clinical and basic research laboratory techniques, and study tissue culture model systems, as well as primary patient-derived samples.

Publications

Specific research programs
A) The role of microenvironmental interactions in the pathogenesis of chronic lymphocytic leukemia.
B) The function of CD19 and CD38 in the physiology of malignant B-cells.
D) Development of novel laboratory methodologies to study B-cell malignancies
The complexity of the B-cell receptor.
Tumor-Microenvironment Cellular Interactions in Cancer Progression and Metastasis

Positions
Chair, Department of Surgery A
Senior Lecturer, Faculty of Medicine

Research
The surgical oncology research lab was established in order to conduct clinical and basic science research in order to further understand disease patterns and mechanisms, thus, trying to improve diagnosis and treatment outcomes of the patients we operate on. Moreover, the lab is a platform for the development of future academic surgeons, passionate about both research and the field of surgery. We focus on patient-driven translational research, studying the molecular basis of various soft tissue sarcoma (STS) tumors, and gastrointestinal malignancies. We aim to explore distinct signaling pathways and molecules that may play a role in cancer progression and metastasis. Specifically, we investigate the cross talk between metastatic GI cancer cells and the omentum. We also investigate the potential role of miRNAs as molecular biomarkers for staging, prognosis, and pattern of future spread. For these purposes we frequently utilize in-vitro and in-vivo models, human cancer specimens from our clinically annotated tissue bank, as well as various advanced molecular and bioinformatic approaches.

Tumor growth is promoted by omental fat in vivo. PANC-1 pancreatic cancer cells were initially pretreated in vitro with human omental fat conditioned medium (CM) or control regular medium (RM) for 24h. The tumor cells were then injected subcutaneously into the flank of nude mice. (A) Tumor growth and weight of PANC-1 tumors was facilitated in mice following pre-treatment with omental fat CM (n=15); (B) Representative mice and tumor images; (C) Marked increase in proliferation (Ki-67) and microvessel density (CD31) by human omental fat CM.
Uptake of omental fat exosomes by cancer cells. PKH67-labeled omental fat exosomes were incubated with PANC-1 pancreatic cancer cells (upper panel) and AGS gastric cancer cells (lower panel), reaction was stopped at different time points (1, 3, 5 and 7 hours) and cells were analyzed by confocal microscopy. The nucleus of PANC-1 and AGS cells was stained with dapi. Negative control- PANC-1 and AGS cells with no addition of labeled exosomes.

Publications

Investigating the Immuno-Proteome in Cancer

Positions
Senior Physician, Institute of Pulmonary Medicine, Sheba Medical Center
Senior Lecturer, Faculty of Medicine

Research
We study the proteins and peptides involved in the interaction between immune cells and tumor cells. While genomics has boosted our knowledge on the molecular basis of human disease, both DNA sequencing and gene expression analysis report on indirect effects that often do not correlate with the actual expression and activity of proteins in cells and tissues. Importantly, proteins are the most prevalent drug targets. Thus, we employ advanced high-throughput immuno-proteomics, using mass-spectrometry-based methods, cell biology, biochemistry and in vivo models to reveal proteins with a novel immuno-regulatory function that can serve as drug targets in cancer and autoimmune diseases.

Publications

Strazza M, Azoulay-Alfaguter I, Peled M, Smrcka AV, Skolnik EY, Srivastava S, Mor A. PLCε1 regulates SDF-1α-induced lymphocyte adhesion and migration to sites of inflammation. Proc Natl Acad Sci USA. 2017;114(10):2693-2698.

EFHD2 is required for PD-1 clustering at the immunological synapse. freshly isolated human T cells were transfected with non-targeting siRNA (siControl) (A) or siRNA targeting EFHD2 (siEFHD2) (B) and with GFP–PD-1 expression plasmid, followed by co-culturing with Raji B cells expressing PDL1 and loaded with SEE. Cells were subjected to real-time imaging by confocal microscopy.

Grants

2019-2021 Israel Science Foundation
Immunotherapy of Brain Tumors: From Basic Mechanisms to Clinical Translation

Positions – Zvi Ram
Chairman, The Neurosurgery Section, Tel Aviv Sourasky Medical Center
Full Professor, Faculty of Medicine
Former Chairman, Tumor Section of European Association of Neurosurgical Societies

Positions – Ilan Volovitz
Lab Head, Cancer Immunotherapy Lab, Neurosurgery Department, Tel Aviv Sourasky Medical Center

Research
Our laboratory studies the unique immunology of brain tumors by combining basic-science with clinically-applied investigation. Utilizing the discrepancy between the relatively weak immune surveillance inside the brain and the potent one outside it, the lab has developed a novel method to treat brain tumors utilizing a concept we termed ‘Split Immunity’. The concept was recently translated from rats to human glioblastoma (GBM) patients. To monitor the post-therapy changes in the anti-tumor immune response, the lab has developed a unique set of high resolution immune assays that follow the peripheral (outside the tumor) and the intratumoral immune response.

Main research interests
• Development of scientific and clinical insights into the concept of ‘Split Immunity’ and how it affects the treated patients.

Left: Samples from patients with glioblastomes, low grade glioma, metastasis from a peripheral tumor to the brain, and an anaplastic lesion were flow-cytometrically analyzed using the lymphocyte, innate and dendritic cell (LIDC) panel. Percentages of each identified cell subset were calculated to all immune cells within the region (plotted as a pie chart) and to the total number of immune cells within the brain (represented by the relative size of the pie chart). Percentages in white/red font represent BC frequencies.
Right: A patient’s brain tumor sample was dissociated to single cells, and stained using the innate cells’ panel. Following gating off all cells identifiable by this panel, the cells were color-coded and overlaid in a multi-panel display.
• Mapping of the entire adaptive and innate cellular immune milieu found inside human brain tumors using advanced multicolor (up to 12-color) flow cytometry.

• Using a cell-centered approach called “Immune Cytomics” to study the network of interactions formed between the different intra-tumoral immune cells and between immune and tumor cells.

• Evaluating how novel, non-immune-based, treatments for brain tumors affect the anti-tumoral immune responses.

Publications

Radiation Biology: Translating Biological Insights from the Lab to Impact Cancer Patient Care

Positions (Dr. Lawrence)
Director, Center for Translational Research in Radiation Oncology
Senior Lecturer (regular track), Faculty of Medicine
Assistant Professor (adjunct), Dep. Radiation Oncology, Thomas Jefferson University

Research
Radiation therapy is a cornerstone of modern cancer care. Ionizing radiation kills cancer cells by generating reactive oxygen species, damaging DNA, and inducing chromosomal damage. Yet many aspects of radiation biology remain unknown. The lab focuses on understating cells’ ability to survive ionizing radiation, a phenomenon known as radioresistance. We seek to answer the question
of how some tumors are able to withstand very large doses of radiation. We hypothesize that cells withstand the intense onslaught of DNA damage by adapting their metabolic processes, diverting biosynthesis pathways to nucleotide synthesis and REDOX management. Another explanation of why cells in-vivo appear to resist radiation is the result of the interaction between tumor cells and the microenvironment. Ongoing projects in the lab are challenging and developing both these concepts.

The research center also performs clinical research, initiating and running clinical trials. Hence, a particular strength of the lab is the ability for our findings to impact patient care through the performance of clinical trials.

Publications

Lawrence YR, Moughan J, Magliocco AM, Klimowicz AC, Regine WF, Mowat RB, DiPetrillo TA, Small W Jr, Simko JP, Golan T, Winter KA, Guha C, Crane CH, Dicker AP. Expression of the DNA repair gene MLH1 correlates with survival in patients who have resected pancreatic cancer and have received adjuvant chemoradiation: NRG Oncology RTOG Study 9704. Cancer. 2017

miRNAs in Solid Malignancies / Immunotherapy Research / Clinical Cancer Research

Positions

Senior Lecturer, Faculty of Medicine
Senior Medical Oncologist, Clinician-investigator, Oncology Institute & Cancer Research Center, Sheba Medical Center, Tel Hashomer

Research

As a clinician-investigator and a practicing medical oncologist, our lab is engaged in basic, translational and clinical cancer research.

Basic research: Our lab at the Cancer Research Center at the Sheba campus studies the role of microRNAs in solid malignancies. We were the first to show that a large micro-RNA cluster on chromosome 14q32 is silenced in melanoma. This cluster was later dubbed ‘the larger tumor suppressor microRNA cluster’ and was shown to be down-regulated in a wide range of malignancies. We showed the involvement of three microRNAs from this cluster in melanoma progression; specifically, preliminary results suggest that a family of microRNAs are associated with the development of resistance to chemotherapy in bladder cancer; research is currently ongoing.

Translational research: Immunotherapy, namely the activation of the immune system against cancer, is revolutionizing cancer treatment, yet not all cancers, and not all patients within a given cancer, respond to immunotherapy. Currently, the biomarkers associated with response to immunotherapy are unknown. In collaboration with Dr. Irit Gat-Viks from the Faculty of Life Sciences at TAU, we are embarking on a clinical trial in which we will prospectively search for immune cell populations within the systemic circulation that are associated with response to immunotherapy. We will perform RNA sequencing of immune cells before and following immunotherapy treatment and analyze the cell populations using deconvolution algorithms developed at the Gat-Viks lab.

Clinical research: Whereas the list of anti-neoplastic treatments is constantly growing across the cancer spectrum, currently there are almost no proven predictive biomarkers of response to treatment with any of these agents, and clinical decisions are generally empirical and based on ‘trial and error’. We are interested in finding associations between lab variables/plasma biomarkers and response to anti-neoplastic treatment in genito-urinary malignancies; specifically, we recently addressed the following clinical questions:

1. We described clinical and laboratory variables associated with response to the hormonal agent abiraterone in prostate cancer.
2. We showed that the neutrophil-lymphocyte ratio is associated with response to chemotherapy in bladder cancer, and that a high lymphocyte count is associated with pathological complete response at cystectomy following neo-adjuvant treatment.
3. We described the patterns of change of several plasma biomarkers following treatment with the biological agent cabozantinib in prostate cancer.
4. We summarized our clinical experience with the immunotherapeutic anti-PD1 antibody pembrolizumab, showing that low lymphocyte counts are associated with lack of response.

These clinical works, taken together, show that the adaptive arm of the immune response is imperative in amounting response to both chemo and immunotherapy.

Publications

Hematological Malignancies

Positions
Prof. Raanani, Clinical Full Professor in Hematology, Faculty of Medicine

Research
Our primary field of interest is finding new therapies or better therapies for the treatment of incurable hematological malignancies. Our projects focus on exploring the effect of new agents on different hematological cell lines and patient samples. We study the molecular pathways involved in the initiation and maintenance of hematological tumorigenesis and try to understand the effect of the different agents on these molecular pathways. We apply cutting-edge technologies including, molecular protein and cellular biology, microarray and NGS analysis. Understanding normal hematological development and understanding the molecular effect of different chromosomal abnormalities.

Mantle cell lymphoma Jeko-1 cell line

Non treated

--- : 94.30%
++ : 2.18%

10 μM deferasirox

--- : 38.42%
++ : 18.40%

Deferasirox is a rationally-designed oral iron chelator used to reduce chronic iron overload in patients who receive long-term blood transfusions. We showed that this agent can induce apoptosis in mantle cell lymphoma.

Tel Aviv University

Prof. Pia Raanani, M.D.
Hematology Department, Faculty of Medicine; Hematology Division
Davidoff Cancer Center, Beilinson Hospital
Rabin Medical Center

Dr. Galit Granot, Ph.D.
Experimental Hematology Lab
Felsenstein Medical Research Center, Beilinson Hospital
Rabin Medical Center

URL: http://hospitals.clalit.co.il/Hematology-Inst.aspx
galitg@clalit.org.il
URL: http://hospitals.clalit.co.il/Experimental-hematology-lab.aspx

(translocations, deletion, etc.) is essential for understanding the processes leading to the induction and maintenance of hematological malignancies and for designing targeted treatments for these malignancies.

Publications

Dr. Amir Shlomai, M.D., Ph.D.
Department of Medicine D and the Laboratory of Liver Research
Felsenstein Medical Research Center
Rabin Medical Center, Beilinson Hospital

Investigating Mechanisms of Hepatitis B Virus Persistence and Its Link to Liver Cancer

Positions
Head, Department of Medicine D and the Laboratory of Liver Research
Senior Lecturer, Faculty of Medicine

Research
Current research interests focus on the role of the innate immune system in HBV infection and the role of HBV infection in liver carcinogenesis.

1. Studying the molecular mechanisms by which HBV confers resistance to sorafenib in order to get a deeper understanding of HBV oncogenicity and to gain insight into possible molecular targets for HCC interventions.

2. Characterizing the molecular signature of type I interferon induction and response following HBV infection.

3. Characterizing the interferon-response genes (ISGs) induced by HBV and their effect on HBV life cycle.

4. Investigating the mechanism(s) of HBV inhibition by the innate immune response.

Publications

Peleg N., Sneh Arbib O., Issachar A., Cohen-Naftaly M., Braun M., and Shlomai A. Noninvasive scoring systems predict hepatic and extra-hepatic cancers
in patients with nonalcoholic fatty liver disease. *PLOS ONE* 2018 13(8), e0202393

Association between fibrosis stage and outcomes of patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. *Gastroenterology.* 2020 Feb 4:S0016-5085(20)30137-2.

Grants

2016-2021 US-Israel Binational Science Foundation (BSF) grant (with CM Rice)

2021-2022 Elza and Leo Abramson Research Grant, Faculty of Medicine, Tel Aviv University
Pediatric Brain Tumors, Leukemias and Lymphomas

Research
Targeted therapies aimed at new targets identified by in-house analysis of genetic panels studying pediatric cancer patients’ DNA.
Immunotherapy with new bispecific antibodies.
Incorporation of checkpoint inhibitors.
T-CARS for patients with relapse/refractory ALL. This innovative treatment has been performed in only a few centers in the USA and was successfully given to 5 patients. Pediatric brain tumors and neuroblastoma studies in the lab including pathogenesis, innovative therapies, discovery of new molecular aberrations, new biomarkers, new therapeutic targets the effect of new drugs on cell lines, primary cells and xenografts, studying the influence of changes in the levels of non-coding RNA’s (mirs and link-RNA) on the tumor.
Improvement of the activity of cytokine induced killer cells stemming from alfa/beta depleted T cells left over after haploidentical transplantations.
Studying the effects of phytocannabinoids, synthetic cannabinoids and endocannabinoid-like substances on pediatric glioblastomas and neuroblastoma.
Main research areas:
1. T-CARS therapy for relapsed/resistant CD19 expressing leukemias and lymphomas
2. The effects of cannabinoids on pediatric tumors
3. Cytokine induced killer cells against pediatric tumors
4. Pediatric brain tumors research

Publications
Translational Research on Viral Hepatitis and Transplantation Immunology

Positions

Prof R. Tur-Kaspa: Professor, School of Medicine
Director, Felsenstein Medical Research Center, School of Medicine
Dr. Romy Zemel: Senior Lecturer, Faculty of Medicine, Tel Aviv University

Research

Our research focus on translational research on two main subjects: Viral hepatitis and transplantation immunology. We apply cutting-edge technologies including viral infection, CRISPR cas9 gene editing, exosomes purification, as well as immunological, molecular, protein and cellular biology methods.

Viral hepatitis

Our main interest is on studying viral host interaction with an attempt to develop inhibitors active against a broad range of viral genetic variants. Along the years we studied hepatitis viruses, mainly hepatitis C.

- **Vitamin-D- an innate antiviral agent suppressing Hepatitis C virus in human hepatocytes.** We have demonstrated a direct anti-viral effect of vitamin D in an in vitro infectious virus production system. We apply cutting-edge technologies including viral infection, CRISPR cas9 gene editing and identified 25(OH)D3, vitamin D metabolite, as mediating the anti-HCV activity, and proposed a novel mode of action for the anti-HCV activity of vitamin D3 that is mediated by 25(OH)D3 in a VDR independent mechanism. We are now pursuing our research further to explore the mechanism by which vitamin D metabolite exert its inhibitory effect on Hepatitis C.

- **Effect of hepatitis B virus (HBV) on the development of resistance to chemotherapy.** Hepatitis viruses are known to contribute to the development of liver cancer and have an effect on the response to cancer treatment. We aim to explore the molecular mechanism of HBV induced resistance in attempt to improve the current anti-cancer treatments.

Transplantation immunology

- **Urinary exosomes as biomarkers and therapeutic targets in polyomavirus-associated nephropathy.** In collaboration with Dr. M. Herman-Edelstein and Dr. N. Ben-Dor. This study combines basic virology with clinical practice to study BK virus-associated nephropathy following transplantation,
and to evaluate the potential use of urine exosomes as a novel and non-invasive biomarker for BK reactivation.

- Urinary surface- exosomal and cargo-exosomal proteome profiling for discovery of biomarkers for early detection of kidney rejection. In collaboration with Dr. Daniella Levy Erez.

Kidney transplantation is considered the best available therapy for patients with end-stage renal disease. Unfortunately, despite significant improvements in one-year kidney allograft survival the rate of chronic graft loss after the first year remains substantial. Early detection of graft injury after kidney transplantation is key to maintain long-term graft function. The current diagnosis of renal allograft rejection mainly relies on clinical monitoring and a kidney transplant biopsy, which is invasive and many times insufficiently informative for clinical decision-making. Thus, there is a need for a non-invasive diagnostic technique with good early predictive values to determine graft injury and to provide accuracy in titrating immunosuppression.

With the aim to address the existing gap of scarce noninvasive early biomarkers, we perform a comprehensive non-biased proteomic profiling of urinary surface and cargo-exosomes of pediatric and adult patients developing rejection after a kidney transplant. We isolate and characterize recipient’s post-transplant urinary exosomes and define the association between specific urinary exosomal proteins and their association with rejection and allograft outcome.

Publications

Tur-Kaspa

Zemel

intestinal metaplasia to gastric cancer involves \(POPDC1 \) and \(POPDC3 \) downregulation. Int J Mol Sci. 2021;22(10):5359.

Review

Cell to Cell Communication in Cancer: The Role of Exosomes

Positions
Senior Lecturer, Faculty of Medicine

Research
Exosomes are nanosized particles that are formed in different types of cells, travel in blood and other body fluids and carry a cargo of proteins and nucleic acids. This cargo is delivered to neighbouring cells. Our lab studies the role of exosomes in cell to cell communication and the potential use of exosomal cargo as biomarkers for diagnostics and followup of patients with cancer. Previously, we found that exosomes derived from various neoplastic cells contain hTERT transcript of telomerase, an enzyme that is unique to cancer cells and is only rarely found on non-neoplastic cells. Furthermore, this transcript is actively translated and mediates canonical and non-canonical functions in the recipient cells. In parallel we have found that in cancer patients, about 2/3 of the sera derived exosomes contain detectable telomerase transcript.

Currently we are focused on the potential use of exosomal hTERT as a cancer biomarker. We follow the presence of telomerase in exosomes isolated from patients with cancer in response to treatment. This followup is conducted on exosomes derived from patients with lung cancer, breast cancer and other cancers.

Figure 1. FITC-stained exosomes are taken up by HUVEC cells analyzed by fluorescent microscopy.

Figure 2. FM-134 stained exosomes are taken up by HUVEC cells analysed by flow cytometry.

Publications

Control

Stain

Figure 1. FITC-stained exosomes are taken up by HUVEC cells analyzed by fluorescent microscopy.

Figure 2. FM-134 stained exosomes are taken up by HUVEC cells analysed by flow cytometry.
glioblastoma multiforme in which we also correlate the disease stage with the presence of mutations present at telomerase promoter as well. We study also other types of cargos that are delivered by exosomes as well.

Additionally, we are studying the crosstalk of exosomes isolated from cancer cells and cells of their microenvironment. In figure 1, the uptake of FITC-stained cancer cell exosomes by HUVEC (Human Umbilical Vein Endothelial Cells) is shown. In figure 2, the same uptake is shown by FACS analysis.

Publications

Deciphering Endocrine Aspects of Cancer Development

Positions
- **Prof. Ido Wolf, M.D.**
 Oncology Division, Tel Aviv Sourasky Medical Center
 Parasol Center for Women’s Cancer Research

- **Dr. Tami Rubinek, Ph.D.**
 Head – Oncology Division Research Lab, Tel Aviv Sourasky Medical Center
 Parasol Center for Women’s Cancer Research

Klotho: the hormone that links longevity, metabolism and cancer

Klotho is a hormone that regulates physiologic processes, including kidney functions and metabolism. Reduced klotho levels are associated with aging. We discovered that klotho is a potent tumor suppressor in breast, pancreatic and ovarian cancers. Current projects:

- Characterization of klotho activity in cancer by generation of transgenic mice, structure-function analyses and biochemical analyses of enzymatic activities
- Deciphering the role of klotho as a regulator of calcium fluxes, mitochondrial activity and tumor metabolism
- Discovering the role of klotho in regulator of the GH/IGF axis

The estrogen receptor (ESR1) mutations in breast cancer

Our lab was the first to discover mutations in ESR1 that confer resistance to hormonal therapies in >40% of patients with metastatic breast cancer. Current projects:

- Styding the mutations as mediators of aggressive phenotype of breast cancer

Co-localization of klotho (green) with mitochondria (red) in MCF-7 breast cancer cells.

Structural model of D538G mutated ESR1

WT- ER + Tam

D538G-ER on WT- ER + E2
• Studying the unique metabolic activity of cancer cells harboring the mutations

• Development of novel treatment strategies in breast cancer

How do cancer cells choose where to metastasize—or what regulates tropism?

We are tackling the role of specific mutations in mediating homing of cancer cells to specific organs:

• Deciphering the mechanism of homing of pancreatic tumors to different organs

• Revealing metabolic pathways enabling colon cancer cells to form brain metastasis

Publications

Grants

2017-2022 Orion Scholarship
Breast Cancer and Immunomodulatory Therapies

Prof. Rinat Yerushalmi Positions
Head, Breast Cancer Unit, Davidoff Center, Rabin Medical Center
Head, Breast Cancer Research Laboratory, Felsenstein Medical Research Center

Dr. Annat Raiter Position
Head, Research, Breast Cancer Research Laboratory, Felsenstein Medical Research Center

Research
Our research focuses on Immunotherapy. Breast cancer has shown only modest benefit from immunomodulatory therapies, if at all. This is principally due to tumor escape mechanisms. We have only limited understanding of these mechanisms. Our translational research aims to better understand these resistant mechanisms, broaden current clinical applications and overcome some of these unsolved issues.

Immunosuppression exerted by TNBC cells on T and NK cells.
Our aims are:

To discover and study a novel tumor escape and tumor induced immunosuppression

We investigate a new tumor escape mechanism implemented by Triple Negative Breast Cancer cells to induce immunosuppression through the CD45 molecular pathway. We found that breast cancer inhibits the Src family of tyrosine kinases, resulting in the suppression of immune cells. Our aim is to understand and decipher the immunosuppression mechanism used by breast cancer cells to escape tumor cell eradication.

The development of new immunotherapy strategies for breast cancer

Monoclonal antibodies directed against immune checkpoints, e.g., the programmed cell death protein 1 or programmed cell death ligand 1 (PD1/PDL-1), with or without combination with cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), have been successfully used for the treatment of different cancer types. In general, immunotherapy has shown only very modest benefit in breast cancer patients. Related to this research, we are studying a novel molecular mechanism of an immune modulating therapeutic peptide (C24D) that reverses the tumor escape mechanism through the CD45 signaling pathway. We aim to develop a new platform of immune-oncology drugs for the treatment of breast cancer based on C24D peptide and the CD45 signaling pathway.

Publications

Immunofluorescence of human infiltrated leucocytes (green) in human triple negative breast cancer (red) in peptide treated mice
Macrophage accumulation at site of myocardial injury. Credit: Tal Konfino, Dalia Palevski, Jonathan Leor lab
Investigating Hypertension, Diabetes Mellitus and Metabolic Syndrome

Positions (Prof. Grossman)
Head, Internal Medicine D and Hypertension Unit, Chaim Sheba Medical Center, Tel-Hashomer
Professor of Medicine, Faculty of Medicine, Tel Aviv University
Dean, Faculty of Medicine, Tel Aviv University

Research
Our research concentrates on the impact of coronary calcifications on cardiovascular morbidity and mortality in hypertensive patients. We showed that the presence of coronary calcifications is associated with increased mortality and that diabetic patients without coronary calcifications have a good prognosis. Our team also studied the effect of blood pressure control and stroke outcomes. We showed that elevated systolic blood pressure in acute stroke is associated with poor outcome and that change in BP during the first week after stroke has no effect on outcome. Our main basic research is on metabolic syndrome. How can we improve metabolic syndrome? We also studied the effect of melatonin on the cardiovascular system. Our recent paper in J Pineal Res showed that melatonin prevents kidney injury in a high salt diet-induced hypertension model by decreasing oxidative stress.

Publications

Cardiovascular Regulatory Systems Focusing on the Autonomic Nervous System in Human (Translational Science)

Position
Associate Professor, Medicine and Physiology

Research
Recanati Autonomic Dysfunction Center
The effect of adrenoceptors activation on the coagulation system
Insight into the regulatory mechanisms of mesenteric flow
Organ-specific flow regulation, e.g. cerebral and penile blood flow
Autonomic nervous system dysregulation in CVD
Autonomic nervous system and pain regulation, including fMRI studies
Postural tachycardia Syndrome (POTS)
Collaborations: Vanderbilt University, Nashville, TN, USA, Milano University, Italy, and Eurospace Center, Germany.

Publications

Atherosclerosis – Research, Treatment and Prevention

Positions
Professor of Medicine, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine
Acting Vice President of Research and Development and Academy and Chairman, IRB Committee
President, The Bert W. Strassburger Lipid Center, Sheba Medical Center
Chairman, IRB Committee of the Sheba Medical Center
CEO, Vascular Biogenics Ltd (VBL)

Research
We investigate lipid metabolism, atherosclerosis and vascular biology. In our research, we apply advanced research tools, utilizing in-vitro and in-vivo models and performing clinical trials. In our studies, we focus on basic aspects in atherosclerosis progression and developing new treatments for prevention of the disease.

The current research projects are:
The effect of carotenoids and their cleavage products on the activation of the nuclear receptor RXR and atherosclerosis in mouse models.
The effect of carotenoids on Retinitis Pigmentosa.
The effect of carotenoids on Alzheimer in transgenic mice.
The role of the coagulation Factor XI in early and advanced atherosclerosis by using apolipoproteinE/FactorXI double knock-out mice.
The role of apoA5 in atherosclerosis development by using apolipoproteinE/apoAVI transgenic mice.

Publications

Macrophage foam cell formation is inhibited by 9-cis retinoic acid
Elucidating the Molecular & Pathophysiological Mechanisms Leading to the Initiation and Progression of Cardiovascular Diseases

Positions (Prof. Keren)
Head, Cardiology Division, Tel Aviv Sourasky Medical Center
Professor, Department of Cardiology

Research
We study the molecular networks leading to the initiation and progression of acute versus chronic presentation of various cardiac diseases. Currently we mainly focus on studying the following cardiac pathologies: 1. Acute myocardial infarction leading to left ventricular dysfunction; 2. cardiac volume overload- a prominent pathology in valvular diseases and chronic heart failure; 3. the prevalent presentation of cardio-renal syndrome. Utilizing the appropriate in vivo models as well as various molecular and cellular techniques, we have been trying to identify novel therapeutic targets for attenuating disease progression and to improve the clinical presentation of these devastating conditions.

Captures of transmitted electron microscopy demonstrating the organized structure of cardiac mitochondria in sham-operated control rats (A) compared to the swollen unorganized structure of the mitochondria in the heart tissue of animals with chronic kidney disease (B).
Main ongoing research topics

The potential involvement of the cation channel TRPV2, which is highly abundant on peri-infarct immune cells, in the recovery processes following an acute myocardial infarction.

Elucidating the therapeutic potential of anti-metalloproteinase antibodies as well as reagents holding anti- histone deacetylase activity for the treatment of cardiac volume overload.

Cardiac mitochondria as a promising target for attenuation of cardiac dysfunction and progression to cardiorenal syndrome in patients with chronic kidney disease.

Publications

Grant

2018-2020 Ichilov-Weizmann Joint Fund
2018-2020 Ministry of Health (Chief Scientist)
2020-2022 Israel Innovation Authority-Kamin
Positions
Full Professor, Faculty of Medicine
Rena Favaloro Chair for Heart Surgery and Interventional Cardiology
Chairman, Division of Cardiology and Cardiac Catheterizations, Rabin Medical Center
President, Israeli Society of Cardiology

Research
Prof. Kornowski has been involved in multiple technology developments and innovative treatment techniques in cardiology. The research activities include:

- Development of new techniques geared towards catheter valve interventions, examining feasibility, safety and treatment outcomes.
- Innovative imaging techniques of the coronary arteries and physiology.
- Study of the cardiac effects of caloric restriction and neuro-hormonal pathways of weight reduction.
- Translational studies of coronary thrombosis and progenitor endothelial cells.
- Translational cardiovascular research of stem cells and gene therapy.
- Development of new medications during and after cardiac catheterizations.
- Research of novel drug-eluting stents and biodegradable scaffolds implanted within the coronary arteries.
- Development of methods of “hybrid” cardiac interventions combined with minimal invasive cardiac surgery to treat structural and coronary diseases.
- Mentoring and guiding students and young cardiologists in the early stage of their career.

Publications

Cardiovascular Regenerative Medicine and Targeting of Inflammation and Fibrosis

Positions
Professor of Cardiology, Faculty of Medicine
Director, Neufeld Cardiac Research Institute, Tel Aviv University
Director, Tamman Cardiovascular Research Institute, Sheba Medical Center
Director, Sheba Center of Regenerative Medicine, Stem Cells and Tissue Engineering

Research
Our lab is focused on translational research. Specifically, we study cardiovascular regenerative medicine, stem cells and tissue engineering. In addition, we aim to target cardiovascular inflammation and fibrosis using novel nano-medicine and a theranostic (therapy + diagnosis) approach. We use a combination of gene profiling, new biomaterials, liposomes, tissue engineering, physiological testing, and molecular imaging technologies, to understand heart cell biology in vitro and in vivo. Particularly, we work on the development of novel nano-therapies for cardiovascular disease.

Publications (selected)
Naftali-Shani N, Molotski N, Nevo-Caspi Y, Arad M, Kuperstein R, Amit U, Huber I, Zeltzer LA, Levich A, Abbas H, Monserrat L, Paret G and Leor J. Modeling peripartum cardiomyopathy with human myocardial regeneration in a neonatal heart of a mouse, 3 days after apical resection. We used the heart of a newborn mouse to study the mechanism of myocardial regeneration and repair. The regenerating myocardium is characterized by cardiomyocyte (cardiac actin, red) dedifferentiation, and proliferation. Phospho-histone 3 immunostaining detects dividing nuclei (blue) and mitotic activity. Nuclei are stained green with DAPI.

<table>
<thead>
<tr>
<th>Grants</th>
<th>2018-2020</th>
<th>2020-2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ministry of Science, Polymer to treat heart failure of the 3rd age</td>
<td>Ministry of Science, Smart cells for heart repair</td>
</tr>
<tr>
<td></td>
<td>Binational Science Foundation, A new method for imaging and treatment of heart failure (with Fred Epstein, Ayelet David)</td>
<td>Binational Science Foundation, A new method for imaging and treatment of heart failure (with Fred Epstein, Ayelet David)</td>
</tr>
<tr>
<td></td>
<td>2018-2021</td>
<td>2020-2022</td>
</tr>
<tr>
<td></td>
<td>Ministry of Health, Targeting inflammation to treat cardiac fibrosis</td>
<td>Ministry of Health, Targeting inflammation to treat cardiac fibrosis</td>
</tr>
</tbody>
</table>
Stress and Inflammation in the Cardiovascular System

Positions (Prof. Shapira)
Deputy Director General and Director, Rehabilitation Hospital
Associate Dean, Tel Aviv Sourasky Medical Center
Full Clinical Professor

Research
- Cholinergic regulation of stress and inflammation.
- Exercise-induced urinary protein secretion as a risk for metabolic syndrome.
- Determination of new set of control limits for the identification of patients at risk.
- The influence of work characteristics (burnout and stress) on physical health.

The Tel Aviv Medical Center Inflammation Survey (TAMCIS) is a long-term, ongoing cardiovascular cohort study evaluating stress and inflammation in 22,000 apparently healthy working adults admitting to our medical center for routine annual medical check-ups. It is designed to evaluate the association between physiological and psychological measures of stress, inflammatory profile and their additive effect on cardiovascular risk.

Our database includes more than 50,000 visits with more than 600 parameters per visit; including medical history and medication, laboratory tests (Metabolic profile, Blood chemistry, blood count and Urine tests), ophthalmologist examination, exercise test and spirometry, psychological comprehensive questionnaire consisting of socio-demographic variables, personal and family medical history, health behaviors, among them dietary and sports habits, objective as well as subjective work conditions and various psychological scales such as depression, fear of terror, burnout, perceived control and social support. Research methods include basic molecular biology as well as sophisticated statistical models. The study team includes multidisciplinary researchers and physicians, from internal medicine, cardiology and neurology departments, biology and the School of Management.

Publications

Prof. Sami Viskin, M.D.
Department of Cardiology
Tel Aviv Medical Center
Faculty of Medicine

Positions
Associate Professor, Senior Lecturer, Faculty of Medicine
Chair, Israel Working Group on Cardiac Pacing and Electrophysiology, Israel heart Society
Associate Editor – Circulation
Past Associate Editor – Heart Rhythm
Past Associate Editor – Europace

Research
We perform clinical studies on cardiac arrhythmias, particularly related to long QT syndrome, Brugada syndrome and early repolarization. We have several ongoing studies on long QT syndrome caused by atrioventricular block, drug induced long QT syndrome, empiric quinidine therapy for Brugada syndrome.

Publications

Immunofluorescence of PAR-4 expression in human mucosal biopsy from normal pouch. Credit: Sarit Hoffman, Ilya Borovok, Iris Dotan, Nitsan Mahershak
Basic and Translational Research of Liver Diseases

Positions
Director, Liver Disease Center

Research
Our lab is part of the Liver Disease Center at the Chaim Sheba Medical Center. We focus our studies on basic and applied liver disease research to better understand and improve the diagnosis and treatment of different liver diseases. We utilize various methods such as molecular biology, biochemistry, genetics, tissue culture and in-vitro and in-vivo models. The proximity between the Liver Disease Center and the lab creates a unique and highly successful dynamic relationship where the unsolved clinical needs are immediately translated into research for achieving better solutions.

The research in our lab is divided into two main projects:

1. Molecular mechanisms in the development of liver fibrosis
 Fibrosis is the excess accumulation of extracellular matrix (ECM), resulting from chronic, non-resolving inflammation. Multiple etiologies underlie development of liver fibrosis, such as chronic viral hepatitis B or C, autoimmune and biliary diseases, alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH). Fibrosis progression toward cirrhosis is the major cause of liver-related morbidity and mortality. Patient with cirrhosis are more prone to develop liver failure, portal hypertension or infection and are at higher risk of developing hepatocellular carcinoma (HCC). In the normal liver, hepatic stellate cells (HSCs) constitute quiescent, vitamin A–storing cell. Following activation by specific stimuli released by an injured liver, HSCs undergo “activation” or transdifferentiation, yielding a myofibroblast-like cell. We are currently investigating the interactions between hepatocytes and HSCs in healthy and fibrotic livers in the different chronic liver diseases listed above. Our goal is to advance the research in this field and to establish resolution of liver fibrosis.

2. Microbiome and liver diseases
 The human gastrointestinal tract hosts a large number of microbial cells, which exceeds their mammalian counterparts by approximately 3-fold. The genes expressed by these microorganisms constitute the gut microbiome and participate in diverse and essential functions, including digestion, regulation of energy metabolism and modulation of inflammation and immunity. The liver, due to its critical functional relationship with the gastrointestinal (GI) tract, is continually exposed to multiple harmful and beneficial microorganisms derived from the small and large intestines. We study the microbiota signature of patients with different liver diseases (Primary Sclerosing cholangitis (PSC), PSC-IBD, Hepatocellular carcinoma and cirrhosis) and compare...
them to healthy control. Moreover, we investigate the correlation between environmental lifestyle and diet patterns, the host microbiome and disease etiologies.

Publications

Drug Mechanisms and Immunogenicity in IBD

Positions
Director, IBD Service, Gastroenterology Dept. Sheba Medical Center
Associate Professor of Medicine, Faculty of Medicine
Member, Organization Committee, European Crohn’ & colitis Organization (ECCO)

Research
We focus on translational science, aiming to study drug mechanisms in IBD. Specifically, we study mechanisms whereby immune-modulating and biologic drugs exert their cellular effects and/or cause unwanted adverse events, as well as immunogenicity of biologic drugs, i.e. the eliciting of immune hyper-responsiveness in the recipient towards the biologic drug. We are interested also in studying novel herbal compounds for possible synergistic effects with conventional immune-modulators.

Completed projects include:
1. A study to decipher the delay in onset of action of thiopurine related to gradual depletion of antigen-specific memory T-cells
2. Development of novel and one of the first available assays to measure anti-drug antibodies against infliximab, and later adalimumab and currently vedolizumab
3. Identifying the Fab fragment as the immune-dominant fragment of infliximab, responsible for eliciting anti-drug antibodies
4. Study of cross-immunogenicity of infliximab and its bio-similar drug, CT-P13

Ongoing projects include:
1. Studying cellular mechanisms responsible for B-cell lymphoproliferation under immune-modulating drugs
2. Studying the decay in immune-suppression following azathioprine withdrawal
3. Studying herbal Chinese compounds effects on cells propagating inflammation

Publications

Grants
2015–2020 Horizon 2020 Immungenicity of infliximab, within the SPARE trial (BioCycle consortium)
Mucosal Immunology Laboratory

Positions
Prof. Iris Dotan
Director of the Division of Gastroenterology – Rabin Medical Center, Beilinson and Hasharon
Associate Professor of Medicine, Faculty of Medicine
Chair, International Organization for the study of Inflammatory Bowel Diseases (IOIBD)

Dr. Keren Rabinowitz
Head, Research, Mucosal Immunology Laboratory, Felsenstein Medical Research Center

Research
Our research laboratory is situated within the Rabin Medical Center, in affiliation with the Faculty of Medicine at Tel Aviv University. Dedicated to Translational Research in Gastroenterology, we are particularly interested in investigating immune homeostatic and inflammatory responses within the intestinal mucosa, with the ultimate goal of developing personalized treatment approaches for patients diagnosed with inflammatory bowel diseases. To achieve this, we delve into the comprehensive study of various factors, such as the

Human intestinal epithelia cells (EpCAM-green) express Dectin-1 (Red) a receptor involved in fungal recognition (A). Human intestinal derived organoids 3D (B) and 2D (C) immune-stained with UEA1 (green), Beta cathepin (magenta), ZO1 (range) and nuclear stain (blue) 3D and Cytokeratin 8/18 (green), Beta cathepin (magenta) and nuclear stain (blue) 2D.
interaction between the intestinal immune system and commensal flora, the impact of nutritional choices, and the efficacy of biological therapies. Our specific area of concentration lies in comprehending the responses of the intestinal epithelium to commensal flora and its subsequent activation of the intestinal immune system. By gaining a deeper mechanistic understanding and exploring ways to modify and manipulate these pathways, our aim is to prevent, enhance the treatment of, and potentially even cure inflammatory bowel diseases (IBD).

Research topics

• Biomarker-based multidisciplinary team (Bio-MDT) approach to personalized microbial-targeted treatment of pouchitis and Crohn’s disease
• The impact of commensal fungi and bacteria on human intestinal immune response
• The JAK inhibitor-tofacitinib inhibits signaling pathways ex-vivo and has functional implications in human intestinal mucosa.
• Jak inhibitor leads to increased epithelial permeability, MHC class I expression and mucus production in intestinal epithelial cells.
• Mucosal barrier alterations in inflammatory bowel diseases (IBD), specifically mucin characteristics, modifying factors and specific markers in the mucosa of patients with pouches.
• Predominantly antibiotic-resistant intestinal microbiome persists in patients with pouchitis who respond to antibiotic therapy.
• The effect anti-TNFα therapy has on B cell functions in patients with IBD.

Publications

The Role of Incretin Hormones in Macrophage Regulation of Obesity, Inflammation and Insulin Resistance

Position
Senior Lecturer, Faculty of Medicine

Research
Recent studies have suggested that GIP participates in the dynamic and progressive crosstalk between the two fundamental systems of metabolism and immunity. Yet, whether GIP can directly act on immune cells and the resulting consequences on the development and progression of obesity remain elusive. We have previously demonstrated in a murine model of high fat diet (HFD) that a long-acting GIP analogue significantly reduces visceral fat infiltration of pro-inflammatory immune cells and improves insulin sensitivity, thus, highlighting a possible role for GIP as a linker between energy balance and immunologic responses. Our preliminary results clearly indicate that impairment of GIP-governed regulation of immune cells perturbs energy homeostasis, promotes insulin resistance (IR) and intensifies the inflammatory response under HFD. Therefore, we continue to investigate the direct immuno-regulatory role of GIP in immune cells and specifically in adipose tissue macrophages (ATM) and the resulting consequences on the inflammatory response and on the metabolic state in obese human and mice. Specifically, we hypothesize that GIP negatively regulates S100A8/9 in ATM and thereby affects myelopoiesis and energy homeostasis by attenuating beiging in subcutaneous fat. In addition, we suggest that GIP positively mediates, at least in part, whole body energy homeostasis and adipose tissue metabolism through its direct effect on immune cell function. Here, we intend to utilize BM chimerism approach to target GIPR-deficiency to immune cells to explore the role of GIP in immune cells and specifically ATM. We are using chimeras reconstituted with GIP receptor (GIPR)-deficient bone marrow and determine the metabolic and immune phenotype of the mice. To specifically investigate the physiological role of GIP as regulator of ATM function, GIPR-deficiency has been targeted to ATM by using the cre-lox system and crossing the Gipr fl/fl mice with or Cx3cr1-cre mice. We are exploring the role of GIP-governed regulation of immune cell and specifically ATM function and the role of GIP-S100A8/9axis in dictating whole body energy balance, we will perform metabolic analyses that assess energy expenditure, fat versus

Visceral adipose tissue of chimeric mice reconstituted with WT or Gipr−/− bone marrow (BM) and exposed to a 14 weeks high fat diet regimen, showing increased infiltrating immune cells in the Gipr−/− BM reconstituted mice.
glucose utilization, locomotor activity as well as insulin sensitivity. Bone marrow, blood and adipose tissue myelopoiesis is assessed in the various mice exposed to a HFD regimen. We are also identifying target genes in visceral and subcutaneous fat of both chimeric mice and GIPR conditional knockout mice. Finally, we will study the ability of GIP to negatively regulate S100A8/9 in visceral fat explants and sorted ATM extracted from human obese patients.

Expected significance: Our integrative approach will allow significant progress towards revealing basic GIP governed immune-regulatory mechanisms operating at the interface between adipose tissue inflammation and metabolism and their involvement in the pathophysiology of obesity-induced IR. Insights gained in this study will uncover a yet unknown role for GIP in regulating the pathophysiological link between ATM and obesity and may lead to future identification of another class of incretin drugs, namely GIP analogs, with the potential to improve whole body insulin sensitivity via immune cell regulation.

Publications
Host: Microbial Interactions – Translational Research in Gastrointestinal Diseases

Positions
Physician-Scientist, Sheba Medical Center
Senior Lecturer, Tel Aviv University
Adjunct Assistant Professor, Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Cincinnati Children’s Hospital Medical Center, OH, USA.

Research
We are interested in integrating clinical questions, “big-data” approaches, basic science, and bioinformatics with a goal to improve personalized patients’ diagnostic and therapeutic decision. Our interests include host-microbial interactions in health and pathologic conditions including Crohn’s disease and ulcerative colitis. We use a high-throughput approach to detect the widest range of microbial shifts and host gene expression in the actual lining of the gut and feces to characterize disease phenotype and outcome to tailor personalized therapy.

Within our research we focus on characterizing the role of non-coding elements (non-coding RNAs) and we try to elucidate if and how these non-coding regions take part in the host:microbial interactions.

Personalized targeted intervention based on gut profiles?

Publications

*Equal contribution.

Book chapters and Reviews

Grants

2019-2022 The association between gut and oral microbiota and retinitis pigmentosa phenotype. Israel Technology Institute. Rotenstreich/Haberman (co-PI)

2018-2024 cUre CD; Function of long non-coding RNA in Crohn Disease Ulcer Pathogenesis. ERC Starting Grant. Haberman (PI)
Investigating the Microbiome-Human Interactions

Positions
Associate Professor, Faculty of Medicine
Head of Inflammatory Bowel Disease Unit and Bacteriotherapy Clinic
Deputy Chief, Department of Gastroenterology and Liver Diseases, Tel-Aviv Sourasky Medical Center

Research
We study the role of enteric bacteria in inflammatory and metabolic related disease conditions in humans and in-vitro. Specifically, we study how bacterial proteases impact the epithelial barrier function and how enteric microbial alterations are related to diseases. Clinically, we study the implication of fecal microbial transplantation in disease conditions.

Publications

Fecal supernatants from pouchitis patients have increased proteolytic activity, disrupt epithelial tight junctions and increase epithelial permeability. Fecal supernatants isolated from pouchitis patients compared to healthy controls and normal pouch (NP) patients caused: (A) disruption of tight junction proteins (ZO-1, occludin) as assessed by Western blot. (B) Decrease ZO-1 immunofluorescence (white arrows) of Caco-2 cells monolayers. Alexa anti mouse 488 was used as the secondary antibody (green). Nuclei were counterstained with DAPI and are shown in blue.

Grants

2018-2020 The efficacy of non-absorbable antibiotics followed by fecal microbiota transplantation for eradication of carbapenem-resistant enterobacteriaceae colonization. Israel Ministry of Science and Technology

2018- 2020 Fecal Microbial Transplantation for the Optimization of Vedolizumab Treatment in Patients with Crohn’s Disease. Takeda Ltd.
Studying Biliary Atresia Pathogenesis

Positions
Shamir – Professor of Pediatrics, Faculty of Medicine
Waisbourd-Zinman – Attending Physician, Schneider Children’s Medical Center of Israel

Research
Biliary atresia (BA) is a fibro-obliterative disease of the extrahepatic bile ducts affecting newborns, and is the leading indication for pediatric liver transplant. The etiology remains unknown and there is no effective treatment. We identified an isoflavonoid toxin, biliatresone, that causes BA outbreaks in Australian livestock and we showed that it causes lumen obstruction of neonatal mouse bile duct (NBD) explants. This is a novel tool for the study of BA and allows us to study the primary event in the disease, providing new potential for identifying therapeutic interventions. We found that biliatresone acts by inducing a rapid and transient decrease in reduced glutathione (GSH) and a decrease in SOX17 in cholangiocytes and that cholangiocyte injury can

![Figure: Biliatresone induces ductal fibrosis. Neonatal mouse bile duct explants were incubated with DMSO or biliatresone for 24 h and stained for the cholangiocyte marker K19 (green) or the myofibroblast marker smooth muscle actin (SMA) or collagen I or the EIIIA splice variant of fibronectin (all red). Scale bars 100 μm.](image-url)
be mimicked using DL-buthionine sulfoximine (BSO) to reduce GSH or by knocking down Sox17. NBD cultured ex vivo and treated with either biliatresone or BSO showed disruption of the cholangiocyte monolayer, lumen obstruction, and subepithelial myofibroblast differentiation and fibrosis. Both obstruction and fibrosis could be prevented using GSH-protective agents, and were reversible with biliatresone wash out. In this proposal, we aim to define mechanistically the relationship between biliatresone, decreased GSH and downstream signaling molecules (Hey2, Hes1, RhoU, DAAM1 and other WNT signaling pathway genes) in the disruption of cholangiocytes and bile duct integrity. We will study the relationship between changes in cellular tubulin, loss of apical polarity, epithelial permeability and fibrosis and mechanism of repair of cholangiocyte damage and fibrosis. Understanding potential mechanisms of initial injury in BA may lead to new treatments.

Publications

Matar M, Rinawi F, Shamir R, Assa A. Hypergammaglobulinemia is a marker of extraintestinal

Assa A, Frenkel-Nir Y, Tzur D, Katz LH, Shamir R. Large population study shows that adolescents with celiac disease have an increased risk of multiple autoimmune and non-autoimmune comorbidities. Acta Paediatr 2017;106:967-72.

Rinawi F, Assa A, Bashir H, Peleg S, Shamir R. Clinical and Phenotypic Differences in Inflammatory

Yackobovitch-Gavan M, Machtei A, Lazar L, Shamir R, Phillip M, Lebenthal Y. Randomised study found that improved nutritional intake was associated with better sleep patterns in prepubertal children who were both short and lean. Acta Paediatr 2017.

Grants

Personalizing Mediterranean diet in Children: the Ferrero Pilot Trial (RS) 2017-2020 ISF (OWZ)
Elucidating Mechanisms of Endoplasmatic Reticulum (ER) Stress and mTOR Cross-Talk in Drug-Induced Liver Injury

Positions
Professor, Faculty of Medicine
Head, Gastroenterology Institute, Tel Aviv Sourasky Medical Center

Research
The liver is a major site for drug metabolism and elimination, and is susceptible to drug toxicity. In fact, drug induced liver injury (DILI) has become the leading cause of acute liver failure in western countries, so DILI is a major clinical problem conferring significant health and financial burdens. The endoplasmic reticulum (ER) is the cellular site for protein folding. ER stress occurs when the amount of protein entering the ER exceeds its folding capacity. It induces a cyto-protective reaction collectively termed the unfolded protein response (UPR). We hypothesize that ER stress/UPR pathways are activated in response to hepatic drug metabolism survival-apoptosis-autophagy and together with mTOR signaling may mediate the hepatocyte damage and recovery associated with DILI. Our group is investigating the induction of ER stress/UPR by various hepatotoxic drugs, including acetaminophen (N-acetyl-p-aminophenol-APAP) and amiodarone. Our studies include DILI models in novel genetically modified mouse models with reduced ER stress. In addition, we are also exploring the therapeutic potential of chemical chaperones that relieve ER stress and may become therapies for DILI and improve liver regeneration following injury. In particular, we are focusing on the cross talk between ER stress and pathways of hepatic steatosis.

A. In vitro treatment with amiodarone induces lipid accumulation. Lipid accumulation in immortalized hepatocytes assessed by Nile red staining. DAPI (blue) was used for nuclei staining. B. In vivo treatment with amiodarone leads to hepatic lipid accumulation. Oil Red O staining of liver from control or amiodarone treated mice.
Publications

Dig Liver Dis. 2017 May;49(5):523-529.

Mol Metab. 2016;5(9):782-94.

World J Gastroenterol. 2017;23(10):1881-1890.

Positions
Director, Pediatric IBD Center, Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel
Principal Investigator, Pediatric IBD Lab, Felsenstein Medical Research Center.
Senior Lecturer, Faculty of Medicine, Tel Aviv University
Member of Porto IBD Working Group of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition
Member, Paediatric European Crohn’s and Colitis Organization Committee

Research
Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are chronic relapsing and remitting inflammatory conditions of the gastrointestinal tract that affect millions of people worldwide and require the administration of long-term immunosuppressive and immunomodulatory medications to control disease activity. Significant progress has been made in the last decade in our understanding of the pathogenesis of IBD: These disorders develop in genetically-susceptible hosts as a result of dysregulated immune responses to environmental triggers and microbial dysbiosis. Our lab aims to understand key processes that are involved in development of intestinal inflammation in pediatric patients, including:

- What is the role of genetics in very young patients with IBD (diagnosis at age <6) or in those with atypical phenotypes? We use next-generation sequencing platforms to identify novel and known genetic variants that cause monogenic IBD. Such studies not only define key pathways in mucosal homeostasis, but also allow the administration of targeted therapies in selected patients.
- How are stromal cells involved in propagation and resolution of inflammation in IBD patients? We use

![Immune dysregulation in LRBA-deficient patient with IBD. Figure depicts tSNE CyTOF plots of PBMCs from patient vs. controls, followed by (B) NGS of TCRβ (upper panel) and IgH (lower panel) immune repertoire.]
state-of-the-art single cell studies, coupled with advanced proteomics and imaging to define key pathways in inflammation and healing.

- What are the architectural and functional alterations of the immune system during intestinal inflammation? We use single-cell assays, such as mass cytometry time of flight, to identify unique changes in the landscape and function of pro- and anti-inflammatory immune subsets in the gut and in peripheral blood.

- Can we identify biomarkers associated with response to therapy in patients with IBD? We apply different proteomics and next-generation sequencing studies to identify novel biomarkers that could predict a complicated disease course or response to specific a specific therapy in patients with Crohn’s disease or ulcerative colitis.

Publications

Biswas A, Shouval DS, Griffith A, Goettel JA, Field M, Kang YH, Konnikova L, Janssen E, Redhu NS,
Thrasher AJ, Chatila T, Kuchroo VK, Geha RF, Notarangelo LD, Pai SY, Horwitz BH, Snapper SB. WASP-mediated regulation of anti-inflammatory macrophages is IL-10 dependent and critical for intestinal homeostasis; Nat Commun. 2018;9(1):1779.

Reviews

Mononuclear Phagocytes in Digestive Tract Diseases

Positions
Senior Lecturer, Faculty of Medicine, Department of Clinical Microbiology and Immunology
Director, Research Center for Digestive Tract & Liver Diseases

Research
We are studying the role of mononuclear phagocytes in the pathogenesis of IBD, liver diseases, metabolic diseases and colorectal cancer. We utilize transgenic murine systems as well as human patient tissues to mechanistically unravel the involvement of these cells in the pathophysiology of these diseases. Among our main research topics:

• The interplay between immune cells and extracellular matrix (ECM) remodeling in the pathogenesis of IBD, colorectal cancer and liver fibrosis

• Monocytes and macrophage type of immune cells as pivotal drivers of inflammation and resolution during drug-induced liver injury, liver fibrosis and IBD

• The incretin hormone GIP as key linker between metabolism and immunity in type II diabetes

Publications

Ran Afik*, Ehud Zigmond*, Milena Vugman, Mordehay Klepfish, Elee Shimshoni, Metsada Pasmanik

Tumor associated macrophages (TAMs) are pivotal constructors of the colorectal tumor collagenous matrix (Afik et al., JEM, 2016). (A) Confocal imaging showing the co-localization of TAMs (green) with collagen matrix (red). (B) Scanning electron microscopy (SEM) images of decellularized ECM scaffolds extracted from WT and TAM-deficient colorectal tumors. TAMs instruct collagen crosslinking and linearization processes, which are essential for tumor development, expansion and invasion. (C) Murine colonoscopy images showing the impaired colorectal tumor development in the absence of TAMs.
Chor, Anjana Shenoy, Elad Bassat, Zamir Halpern, Tamar Geiger, Irit Sagi* and Chen Varol*. Tumor macrophages are pivotal constructors of tumor collagenous matrix. 2016. *Journal of Experimental Medicine.* First co-authors equally contributed

Grants

2016 – present Endogenous-like inhibitors for ADAM17 and ADAM8 –novel therapeutic agents for Inflammatory bowel diseases (IBD), Azrieli Foundation
Investigating the Mechanisms of Liver Steatosis, Obesity and Cholestatic Injury

Positions

Principal investigator, Research Center for Digestive Tract and Liver Diseases

Tel Aviv Sourasky Medical Center

Senior Lecturer, Faculty of Medicine

Research

Our lab is investigating two main diseases, liver steatosis in models of diet-induced obesity and insulin resistance and cholestatic liver injury. Obesity and the metabolic syndrome accompanying it affect a large percentage of Western world population and the obesity epidemic is only expected to increase, therefore it’s of the utmost importance to understand the mechanisms involved.

Cholestatic liver injury can be caused by various factors that impair bile flow and result in accumulation of bile in the liver, such as genetic defects, structural/mechanical obstruction of bile ducts impairing bile flow (e.g., common bile duct stones), toxins, and dysregulated function of the immune system. The two main cholestatic disorders in adult human patients are primary biliary cholangitis and primary sclerosing cholangitis for which liver transplantation is the only treatment as the disease progresses to liver failure. Specifically, we are investigating the roles played by sortilin, a trafficking molecule and a co-receptor, in both obesity and cholestatic liver damage, since we have found that sortilin deficiency has a protective role in diet-induced obesity and in murine models of primary sclerosing cholangitis. We are using both isolated liver cells (hepatocytes, cholangiocytes) as well as the cre-flox model where sortilin is deleted in various liver cells in order to further elucidate the mechanisms and signals regulating the protective roles of sortilin.

Staining for cytokeration 19 (red) shows formation of epithelial bile duct cells after cholestatic injury induced by bile duct ligation in Sort1−/− mice and induction of proliferation of bile duct cells by administration of leukemia inhibitory factor (LIF).
Publications

Endocrine Disease

The epiphyseal growth plate.
Credit: Galia Gat-Yabionski
Investigating the Molecular Basis of Linear Growth in Children and Animal Models

Positions – Moshe Phillip, M.D.
Professor, Faculty of Medicine
Director, Institute for Endocrinology and Diabetes
National Center for Childhood Diabetes
Schneider Children’s Medical Center of Israel
Vice Dean for Research and Development, Faculty of Medicine

Positions – Galia Gat-Yablonski, Ph.D.
Senior Lecturer, Faculty of Medicine
Committee Member, Israel Endocrine Society

Research
Children’s growth is regulated by both genetic and environmental factors. The most effective environmental factor is nutrition; however, the mechanisms connecting nutrition and longitudinal growth are still not fully understood. Deciphering these mechanisms both in children and in animal models of rats and mice, has been the focus of our research, as currently means to improve growth in short statured children are very limited.

We have identified several novel and important factors that are involved in regulation of this process, including growth factors that are produced and secreted from adipocytes such as leptin and GDF5, transcription factors such as hypoxia inducible factor (HIF)-1, and epigenetic factors such microRNAs and histone deacetylases including SIRT1, HDAC10. We

Effect of Food restrictions (RES) and one day of re-feeding (CU) on growth plate height (above) and bone microarchitecture (below)
have also studies extensively the effect of nutritional manipulation on bone quality in young rats. We may now exploit these findings as targets of new treatment strategies for children with growth disorders as well as children with special nutritional needs like premature babies, infants and children with chronic diseases associated with nutritional problems.

Publications

K Dovc, C Piona, GYeşiltepe Mutlu, N Bratina, B Jenko Bizjan, D Lepej, R Nimri, E Atlas, I Muller, O Kordonour, T Biester, T Danne, **M Phillip**, T Battelino. Faster compared to standard insulin aspart during day-and-night fully closed-loop insulin therapy in Type 1 Diabetes: A double-blind randomized crossover trial. Diabetes Care 2020;43:29-36

L de Vries, Y Lebenthal, **M Phillip**, S Shalitin, A Tenenbaum, R Bello. Obesity and cardiometabolic risk factors children and young adults with nonclassical 21-hydroxylase deficiency. Front Endocrinol (Lausanne) 2019;10:698

Avnieli Velfer Y, **Phillip M**, Shalitin S. Increased prevalence of severe obesity and related comorbidities among patients referred to a pediatric obesity clinic during the last decade. Horm Res Paediatr 2019;92:169-178

C Mathieu, P Dandona, AL Birkenfeld, T Krarup Hansen, N Iqbal, J Xu, E Repetto, MF Scheerer, F Thoren, **M Phillip**. Benefit:Risk Profile of Dapagliflozin 5 mg in the DEPICT -1 and -2 Trials in Individuals with Type 1 Diabetes and BMI ≥27 kg/m². Diabetes Obes Metab 2020; 22:2151-2160

Biester T, Muller I, dem Berge T, atlas E, Nimri R, **Phillip M**, Battelino T, Bratina N, Dovc K, Scheerer MF, Kordonour O, Danne T. Add-on therapy with Dapagliflozin under Full Closed Loop Control improves Time in Range in Adolescents and young Adults with Type 1 Diabetes– The DAPADream Study, Diabetes Obes Metab 2021;23:599-608

Biester T, Weyman K, Hood K, **Phillip M**; FLAIR Study Group. A randomized crossover trial comparing two hybrid closed-loop systems with and without auto correction boluses in adolescents and young adults with type 1 Diabetes. Lancet 2021;397(10270):208-219

H Shpitzer, L Lazar, S Shalitin, **M Phillip**, L de Vries. Good glycemic control at puberty in boys with type 1 diabetes is important for final height. J Diabetes 2021;13:998-1006

M Bar-Maisels, C Menahem, Y Gabet, S Hirma-Bab, **M Phillip**, G Gat-Yablonski. Different effects of soy and whey on linear bone growth and growth pattern in young male Sprague-Dawley rats. Front Nutr 2021;8:739607

Investigating Lipid Metabolism and Atherosclerosis

Positions
Senior Lecturer, Medicine, School of Medicine

Research
Our research interests are within the fields of metabolic inflammation that contributes to the derangements of fat accumulation in atherosclerosis, fatty liver disease and diabetes. Specifically, we study the role of the inflammatory cytokine IL-1α and the ubiquitin-like protein HLA-F Adjacent Transcript 10 (FAT10) in these diseases. We recently discovered that the inflammatory cytokine IL-1α has an important role in early and advanced stages of atherosclerosis and fatty liver disease. We also discovered an unexpected role of IL-1α in determining ovarian lifespan and fertility.

We apply advanced technologies including genetically modified mice (Cre/loxP), molecular and cellular biology and microarray analysis to identify and functionally characterize genes that regulate atherosclerosis with the ultimate aim to prevent and treat this deadly disease.

Publications

![Image of IL-1α+/+ and IL-1α-/- mouse models illustrating bone marrow-derived IL-1α deficiency reduces atherosclerosis.](image_url)

Investigating the Impact of Maternal Fatty Acids Quality on the Fetal Gene Programming and Fingerprint of Health or Obesity Associated Disease

Positions
Associate Professor, CAMEA, Faculty of Medicine
Researcher at the Bert Strassburger Lipid Center, Sheba, Tel Hashomer

Research
We study the effect of maternal dietary fatty acids quality during pregnancy and lactation on the gene networks that are involved in lipogenesis and thermogenesis in the offspring. Obesity-associated chronic metabolic diseases such as Cardiovascular, Type 2 diabetes and Non-Alcoholic Steatohepatosis are purported to have an early in utero origin. The nutrigenetic impact of fatty acids quality in normcaloric diets and healthy mothers during development is almost unknown. We are exploring this question by studying the metabolic and genetic evolution of the offspring from birth to adult age in our animal nutritional model and in humans. We apply the latest methodologies including biochemistry, lipidomics, molecular biology, and microarray analysis to identify and functionally characterize genes that regulate the lipogenic and thermogenic processes that determine the energetic balance leading to obesity or its absence. Understanding the normal or obesity prone gene programming during development and characterizing the associated fingerprint in the offspring at birth is essential for the early diagnosis and design of treatments to prevent long-term metabolic obesity-associated disorders that are leading causes of disease in almost 40% of world population and death.

Protein interaction between products of genes upregulated (red full) or downregulated (blue full) by ω3 essential fatty acid (ALA) or saturated fatty acids (SFA). Enriched functions are marked using open colored circles.
Publications

Bechor S; Nachmias D; Elia N; Haim Y; Vatarescu M; Leikin-Frenkel A; Gericke M; Tarnovsky T; Las G; Rudich A. 2017. Adipose tissue conditioned media support macrophage lipid-droplet biogenesis by interfering with autophagic flux. BiochimBiophys Acta. 1862(9):1001-1012

Leikin Frenkel A. Prof. Dr.Rodolfo R. Brenner 1922-2018 In Memoriam. PLEFA DOI: https://doi.org/10.1016/j.plefa.2018.11.010

A Leikin-Frenkel, S Liraz-Zaitsman, KS Hollandar, D Atrakchi, O Ravid et al. (2021). Dietary alpha linolenic acid in pregnant mice and during weaning increases brain docosahexaenoic acid and improves recognition memory in the offspring. The Journal of Nutritional Biochemistry 91, 108597

Review

Reproductive Endocrinology and Infertility – From Basic Science to Clinical Application

Prof. Raoul Orvieto, M.D.
Sheba Medical Center

Positions
Professor, Obstetrics and Gynecology, Faculty of Medicine.
Incumbent, Tarnesby-Tarnowski Chair for Family Planning and Fertility Regulation, Faculty of Medicine
Director, Division of Reproductive Endocrinology and Infertility, Sheba Medical Center
Co-Editor-in-Chief, Reproductive Biology and Endocrinology

Research
Our research includes:

- Various aspects of controlled ovarian hyperstimulation (COH) for in vitro fertilization (IVF).
- The role of GnRH-analogs, and specifically GnRH agonist versus antagonist in COH for IVF.
- The different modes of triggering final follicular maturation.
- Endometrial preparation for frozen-thawed embryo transfer.
- Obesity and IVF outcome.
- Fragile X Associated Premature Ovarian Insufficiency (FXPOI) in FMR1 premutation carriers.
- Pre-implantation genetic screening (PGS) and diagnosis (PGD).
- Several aspects of ovarian hyperstimulation syndrome (OHSS): pathophysiology, prediction, prevention and its relation to the inflammatory response.

Publications
Manuscripts

Orvieto R. Preimplantation genetic screening- the required RCT that has not yet been carried out. Reprod Biol & Endocrinol 2016;14:35

following assisted reproductive technology (ART) in Israel. Pediatric Blood & Cancer 2016;64:4

Reviews

Orvieto R, Seifer DB Biosimilar FSH preparations- are they identical twins or just siblings? Reprod Biol & Endocrinol 2016;14:32

Gat I, Orvieto R. “This is where it all started” – the pivotal role of PLCζ within the sophisticated process of mammalian reproduction: a systemic review. Basic and Clinical Andrology 2017; 27:9.

Orvieto R. hMG versus recombinant FSH+ recombinant LH in controlled ovarian hyperstimulation for in vitro fertilization: Does the source of LH

Neuroendocrine Tumors

Positions
Professor of Medicine and Associate Dean, Rabin Medical Center
Faculty of Medicine, Tel Aviv University

Research
Our goal is to elucidate the molecular mechanisms that regulate the development of tumors called neuroendocrine tumors (NETs). In this heterogeneous family of tumors, we focus mainly on pituitary, medullary thyroid, lung and pancreatic NETs. We study the expression and function of genes that may affect cell proliferation and hormone secretion and we characterize the mechanisms of action of potential therapeutic compounds. In addition to various cell lines applied, cooperation with neurosurgeons and pathologists enable us access to multiple types of human tumors.

- The regulation of p53 splicing by PICT-1 and its effect on the sensitivity of neuroendocrine tumor cells to Everolimus, mTOR inhibitor
- The expression and function of Ephrins in non-functioning pituitary tumors
- Histone deacetylase inhibitors: their individual and combined effects with somatostatin analogs on PRL-secreting pituitary tumors

Publications

Giustina A, Barkan A, Beckers A, Biermasz N, Biller BMK, Boguszewski C, Bolanowski M, Bonert V,

Reviews

Shimon I. Metastatic spread to the pituitary. Neuroendocrinology. 2020

Mechanisms for the Development of Obesity and Diabetes – Molecular and Translational Aspects

Position
Associate Professor of Medicine, Faculty of Medicine

Research
With the worldwide epidemic proportions of obesity, its related morbidities such as cardiovascular disease and diabetes have become an emerging threat for public health. While the strong genetic predisposition for these conditions is a subject of intense research, less is known about the strong influence of various environmental factors on the pathophysiology of obesity and diabetes. We have recently established the Endocrinology and Diabetes Research Center at the Institute of Endocrinology at Sheba Medical Center with the vision to promote all aspects of research in the field of obesity, insulin resistance and diabetes.

Our group has focused on the following aspects of the pathophysiology of obesity and diabetes:

a. The role of food preservatives as ‘metabolic disruptors’: Some environmental and nutritional factors have been demonstrated to act as ‘endocrine disruptors’, with the ability to act as agonists or antagonists to certain receptors in a wide variety of biological systems. We have identified a common food preservative, with distinct metabolic effects. We were able to demonstrate that this food preservative results in an increase in hepatic glucose production as well as in changes in glucagon and insulin levels leading to liver insulin resistance. Chronic exposure results in weight gain, increase adiposity and systemic insulin resistance in mouse models. We are currently working on translating our pre-clinical results to humans in a series of randomized controlled trial. In addition, we continue to work using in-vitro and in-vivo animal models to assess the effects of micronutrients in modern nutrition on the development of obesity and diabetes.

b. Cellular mechanism linking over-nutrition with inflammation, insulin resistance and diabetes: Previous studies have clearly demonstrated that chronic inflammation and cellular stress is a central feature of obesity and its associated metabolic disease cluster. This inflammatory response is distinct, appears to respond to intrinsic cues, and does not resemble the classical inflammatory paradigm. Significant data have emerged in recent years on the molecular mechanisms leading to the development of these inflammatory and stress responses and how they are linked to metabolic homeostasis. Our research is focused on the regulation and adaptation to inflammation and stress within the tissue milieu in metabolically relevant tissues such as liver and adipose tissue. More specifically, we study cell-cell communication and the propagation of inflammatory and stress signals between cells within a tissue and the potential role of such communication in mediating insulin resistance and metabolic abnormalities.

c. In addition to utilizing basic research tools to promote our understanding on the mechanisms leading to insulin resistance and diabetes, we involve in clinical studies assessing novel risk factors and potential therapeutic approaches for these conditions. We are currently involved in several studies looking at the potential role of the novel adipokine FABP4 (fatty acid binding protein 4) in the insulin counter-regulatory response to hypoglycemia and as a potential contributor to the pathophysiology of gestational diabetes.

Publications
<table>
<thead>
<tr>
<th>Grants</th>
<th></th>
<th>Principle Investigator</th>
<th>2019-2021 Principle Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-2021</td>
<td></td>
<td>Israeli Science Foundation (ISF)</td>
<td>European Foundation for the Study of Diabetes (EFSD) Patient reported outcomes and ambulatory glucose profiles in a virtual type 1 diabetes clinic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connexin 43-mediated cell-cell communication and propagation of adipose tissue ER stress in obesity</td>
<td></td>
</tr>
<tr>
<td>2018-2020</td>
<td></td>
<td>United States-Israel Binational Science Foundation (BSF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impact of culinary coaching telemedicine program on body weight and metabolic outcomes</td>
<td></td>
</tr>
</tbody>
</table>
Deciphering the Molecular Basis of Inborn Errors of Metabolism and Rare Genetic Disorders

Positions
Professor, Faculty of Medicine
Director, Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer
Chairman, Israeli Society for Metabolic Diseases (ISMD)

Research
At the Metabolic Disease Unit and the Molecular Biochemistry laboratory at the Sheba Medical Center, we strive to identify and characterize the molecular basis of an array of inborn errors of metabolism (IEM) and other rare inherited disorders. As a referral center for patients with a wide array of IEMs, we take a “bedside to bench to bedside” approach, studying the biochemical pathways and genetic basis of their disease, delineating the functional effects of the disease-causing variants, and aiming our efforts at the exciting possibilities for novel therapeutic approaches.

In the past few years, we were the first to identify a causative association between variants in several genes and a number of new neurometabolic disorders, as published in the *New England Journal of Medicine*, *American Journal of Human Genetics*, *Brain*, *Journal of Biological Chemistry*, among others. This was the case, for instance, of an autosomal recessive subtype of polyarteritis nodosa associated with Adenosine Deaminase 2 (ADA2) mutations.

Clinical Features of Polyarteritis Nodosa Associated with Adenosine Deaminase 2 (ADA2) Mutations. Clinical manifestations of polyarteritis nodosa included digital necrosis of the toes in Patient B-III-3 (Panel A) and Raynaud’s phenomenon and livedo reticularis in Patient B-III-6 (Panel B). Angiography of the celiac artery in Patient B-III-3 revealed an aneurysm (Panel C, arrow). Periarteritis, fibrinoid necrosis of the media, and destruction of the elastic laminae were revealed in a biopsy specimen of the superior mesenteric artery in Patient A-III-1 (Panel D, hematoxylin and eosin).
of Polyarteritis Nodosa vasculopathy, caused by variants in the CECR1 gene, encoding Adenosine Deaminase 2 (ADA2). Since the publication of our results [Navon Elkan P et al. N Engl J Med 2014], this disorder, manifesting with early-onset cerebral infarctions (among others), has been diagnosed in numerous families worldwide.

Most recently, we identified and characterized a newly recognized inherited neurotransmitter deficiency, caused by mutations in DNAJC12 [soon to be published in the American Journal of Human Genetics]. This disorder was found to manifest in hyperphenylalaninemia, dystonia and intellectual disability. Interestingly, patients with the DNAJC12-associated phenotype showed dramatic clinical improvement following early treatment with BH4 and/or neurotransmitter precursors, and thus this unique disorder is a new treatable and preventable cause of intellectual disability.

Publications

Grants

2020-2021
Clinical and Biochemical evaluation of IDIS, Tel Aviv University, Faculty of Medicine

2020-2024
Modeling tubulopathies using patient-specific kidney organoids for renal precision medicine: mitochondrial disease-associated Fanconi syndrome as proof of concept, Israel Precision Medicine Program (IPMP)-ISF
Deciphering the Role of Novel Human Genes and the Pathophysiology Underlying Rare Monogenic Syndromes

Positions
Director, The Genetics Institute, Tel Aviv Sourasky Medical Center
Associate Professor, Faculty of Medicine
Chair, Israeli Society of Medical Geneticists

Research
We study the genetic basis of human Mendelian syndromes from various medical disciplines using next generation technologies, coupled with functional analyses to uncover novel disease pathways. Our laboratory combines genetic, computational and molecular biology methods to study rare diseases and investigate the pathophysiological mechanisms underlying these syndromes. In addition, we have collaborations with top experts in different medical and biological fields, both in Israel and worldwide.

Over the last five years, we uncovered numerous novel human disease-causing genes using whole exome sequencing. These serve as a first step to better understanding human physiology in health and disease, followed by potential application of this knowledge to implement precision medicine and tailored treatments. Our discoveries provided personalized genetic counseling for families with...
rare genetic disorders and promoted the birth of healthy children through prenatal and preimplantation genetic diagnoses. Moreover, our findings paved the way to tailored medical treatment for some of the patients, which became the treatment of choice for similar patients worldwide. Our research is patient-driven with the aim of continued implementation of personalized medicine and disease prevention.

Recently, we embarked on a new project aimed at identifying risk and protective factors in genes involved in COVID-19 morbidity and disease severity in the hope of identifying in-risk patients and new treatment target settings. We are also taking part in an international consortium aimed at understanding the genetic predisposition to SARS-CoV-2 infection https://www.covidhge.com/

Publications

Identification of Novel Gene-Phenotype Associations in Rare Diseases

Positions
Director, Rafael Recanati Institute of Genetics, Rabin Medical Center
Full Professor, Faculty of Medicine
Committee Member, European Society of Human Genetics

Research
Approximately 80 percent of rare diseases are caused by altered functions of proteins encoded by single genes. Diagnostic success leading to personalized treatments and prevention of complications for individuals with rare diseases depends on progress in the discovery of genes underlying these conditions. Our goal at the Raphael Recanati Genetics Institute at the Rabin Medical Center is to decipher the etiology of rare diseases in humans. Main areas of our research include: 1) identification of new syndromes and new gene-disease associations for neurodevelopmental disorders, eye disorders, skin disorders and other phenotypes; 2) investigation of the role of artificial intelligence-based platforms in the interpretation of broad genomic sequencing results, and 3) definition of the role of clinical geneticists in connecting phenotype to genotype during genomic variant interpretation process. To date, we have identified more than 20 new gene-disease associations. As a result of these discoveries, population-based preventive carrier screening programs in at-risk populations have been established.

Publications

Genomics and Epitranscriptomics

Positions
Professor, Faculty of Medicine
Djerassi Chair in Oncology, Tel Aviv University
Head – Cancer Research Center, Sheba Medical Center, Tel Hashomer
Head- The Wohl Institute of Translational Medicine, Sheba Medical Center, Tel Hashomer

Research
Our main interest lies in the deciphering of novel genetic and epigenetic mechanisms affecting global gene expression and their implication in cancer and neuronal disorders.

Our research interests are:
• The deciphering of the role of RNA epigenetics, including RNA editing and RNA methylation in the regulation of gene expression and cell fate.
• The study of transposable genetic elements in cancer and development
• Genetic and genomic studies relevant to cancer and genetic diseases
• Genetically non-identical tumors

Publications
Manuscripts

Reviews
Rare Diseases Diagnosis and Research

Positions
Pediatrician – Medical Geneticist, Sheba Medical Center
Director, Institute for Rare Diseases
Associate Professor, Faculty of Medicine
National Coordinator, Orphanet Israel
National Coordinator, Rare Diseases National Registry

Research
There are more than 6000 rare diseases affecting more than 60 million people in Europe and the US alone. Most of these diseases are affecting children, are chronic and are of genetic etiology.

Advances in rare disease research are very quickly changing the pediatric care for children affected with these non identified diseases which are very often complex. Research is one of the basics stones for building an accurate care of patients and families. Here, we wish to incorporate research to awareness, diagnosis, treatment and health policy. Our goals include identification of rare diseases causing genes, study the function of the abnormal protein, and finally deciphering new protein pathways in order to establish new therapies. Since the laboratory is in a clinical setting the results of the work is translated into genetic counseling and clinical care and sometimes treatment (MPS II-MPS IV-Fabry disease). With this in mind we are performing cellular studies and drug screens targeted to rare diseases in collaboration with other laboratories, aiming to better understand pathways such as the one linked to mucolipin 1 involved in the mucolipidosis IV clinical symptoms with the goal to provide a specific therapy.

In the field of clinical research, we focus on different subjects that include different topics such as: Natural history of MPS III (Hetz project; Understanding of the practical aspects of the medical genetics (Genet Med. 2016;18(4):372-7); Ongoing project on how the patients are dealing with the information linked to the results of the use of new technologies such as CNV and Exome sequencing.

Reviews

New Gene Identification and Genotype-Phenotype Correlation

Positions
Associate Professor of Pediatrics and Human Molecular Genetics and Biochemistry, School of Medicine
Committee Member, Israel Medical Association, Israeli Board of Medical Genetics, American Society of Human Genetics, American Board of Medical Genetics, Institutional Review Board (Helsinki) Assaf Harofeh
Member, Research and Development Committee, Tel Aviv University

Research
We study genetically undefined families using homozygosity mapping and EXOME analyses, in collaboration with other leading centers, to define disease causing genes. Once a causative mutation is defined, further functional studies are carried out. We identified at least five new genes in the last decade that enabled counseling patients and prenatal diagnosis.

We investigate the genotype-phenotype correlation of newly defined mutations to expand the disease spectrum and impact of genetic disorders.

Publications

NEB schematic presentation and variants location in patients

NEB gene schematic presentation. The gene contains several transcripts ranging from 149-183 exons. The arrows point at specific exons where variants were detected in patients with prenatal AMC.
Investigating the Molecular Genetics of Skin Diseases

Prof. Eli Sprecher, M.D., Ph.D.
Laboratory of Molecular Dermatology, Department of Dermatology, Tel Aviv Medical Center; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine
elisp@tlvmc.gov.il

Dr. Ofer Sarig, Ph.D.
ofers@tlvmc.gov.il

Positions
Chair, Department of Dermatology, Tel Aviv Medical Center
Professor, Faculty of Medicine, Tel Aviv university

Research
Our laboratory has been investigating the genetic basis of skin disorders for the past 15 years. Monogenic skin disorders are known to be prevalent among Middle Eastern populations, and at this regard, our laboratory is ideally situated to carry research in that field. These efforts have led to the deciphering of the molecular basis of more than 20 genetic diseases by members of our group. The deciphering of the molecular basis of a monogenic disorder invariably reveals a novel pathway whose importance is exemplified by the disease resulting from its malfunction. We systematically explore the mechanistic aspects of these new pathways using almost exclusively humanized models such as three-dimensional skin equivalents, hair organ cultures and chimeric mouse models. Once the function of a novel gene product is established, this new knowledge can be translated in the form of new treatments for rare and more common diseases alike. For example, we have found that defective expression of P-cadherin causes hair loss due to disrupted Wnt signaling. We are now developing small inhibitors for this new pathway as a new treatment for conditions associated with excessive hair growth. Based on a similar paradigm we are now also investigating the genetic basis of complex skin traits including psoriasis and pemphigus, a dreadful autoimmune disorder associated with 90% mortality if left untreated.

Artificial human skin grown in vitro
Ex vivo culture of human hair follicles
Publications

Faculty of Medicine Research 2023

Taiber S, Samuelov L, Mohamad J, Cohen Barak E, Sarig O, Shalev S, Lestringant G, Sprecher E. SAM syndrome is characterized by extensive phenotypic heterogeneity. Exp Dermatol. 27, 787-790, 2018

Reviews

Grants

2018-2022 Israel Science Foundation: “Characterization of the role of TSPEAR, a regulator of ectodermal development”. Investigators: Eli Sprecher and Ofer Sarig

2020-2023 Israel Ministry of Health; “ST18 as a novel therapeutic target in pemphigus vulgaris”. Investigator: Eli Sprecher

2020-2024 Israel Science Foundation (Israel Precision Medicine Program): “Genetic & epigenetic modifiers of disease phenotypes: skin diseases as a paradigm”. Investigators: Eli Sprecher, Ruby Shalom-Feuerstein, Or Zuk

2021-2022 European Academy of Dermatology and Venereology (PPRC): Improvement of epidermal differentiation by PRIMA-1MET/APR-246. Relevance to skin diseases. Smail Hadji-Rabia (PI), Daniel Aberdam, Andrea Diociaiu, Eli Sprecher

microRNAs in human disorders: Psoriasis
One of the main research subjects in the lab is the involvement of miRNAs in the psoriasis. We found that the miRNAs’ expression differs between psoriatic and normal skin. Some of these miRNAs are involved in biochemical cycles which regulate skin development and others regulate the interplay between immunocytes and keratinocytes. We are exploring how the expression of these miRNAs is regulated and how they affect the pathogenesis of the disease.

Skin cancer squamous cell carcinoma (SCC)
Skin carcinogenesis, as in most other cancer types, is believed to be a multi-step process with several steps along its malignant evolution: Solar elastosis (SE), actinic keratosis (AK or KIN1-2), a more advanced stage of AK; (KIN3) and CSCC. Using high-throughput deep sequence analysis of five stages along the malignant evolution we clearly see that miRNAs expression is distinct in each of the predefined five stages of malignant progression, a typical signature characterizes each stage. Currently we are investigating the biochemical pathways regulated by these miRNAs and their role in the malignant transformation of keratinocytes.

Parasites exosomal miRNAs as diagnostic tool and their effect on host immune cells
Parasitic infections are responsible for considerable human suffering. Currently, diagnosis and management of parasitic infections is challenging in many settings. We hypothesize that pathogen-specific miRNA can be utilized to understand, diagnose and manage parasitic infections. We have undertaken a pilot study of schistosomiasis as preliminary proof-of-concept for need and feasibility of miRNA-based diagnosis for parasitic infections. Schistosomiasis is a parasitic disease caused by helminthes (blood-flukes) of the genus Schistosoma that affects more than 200 million people, mostly in the developing world. Infection in returning travelers
has received increasing attention, including among Israeli travelers. We were able to detect the presence of schistosomal miRNAs in the micro-vesicles fraction harvested from the patient sera. The Schistosoma parasites have developed multiple mechanisms for modulating or suppressing host immunity. We hypothesize that the adult Schistosoma utilizes secreted exosomes as a mechanism to manipulate and escape the immune system. Currently, we have data suggesting this hypothesis.

The lab researchers and students. PhD students: Mizrahi Adi, Masalha Moamen (MD/PhD student); Postdoc fellow: Dr Layani Adi; Former lab members – PhD students: Dr Lerman Galya, Dr Zehavi Liron, Dr Bonen Hamutal; M.Sc students: Vestin Assaf, Volman Ella, Weinstein Jonathan; Scientist: Dr Elharrar Einat. Location: Sheba Medical Center.

Publications

Cell cycle-dependent localization of codanin-1.
Credit: Noy-Lotan et al.
Haematologica 94:629-37, 2009
CAR T Immunotherapy for Cancer and Beyond

Positions
Senior Scientist
Laboratory Manager and Head, Tel Aviv Sourasky Medical Center

Research
CAR (Chimeric Antigen Receptor) T cell therapy, developed by the award-winning researcher Professor Zelig Eshhar (the previous head of our lab), genetically engineers and trains T cells to specifically recognize and kill cancer cells. We recently developed a dual specific CAR for multiple myeloma, in which the activation and the co-stimulation domains are separately provided by two CARs. This split configuration allows for full and efficient stimulation of the T cells only upon engagement with tumor cells expressing both antigens and sparing cells with single antigen presentation, thus overcoming the “off tumor on target” toxicity. Furthermore, we are developing several combined therapies to overcome today’s challenge of treating solid tumors as for their suppressive tumor microenvironment. Another aspect our lab is developing a better CAR T manufacturing platform.

Publications

Grants
2018-2022 Israel Science Foundation
2019-2022 Kamin
2019-2021 SPARK
2019-2022 Dotan
Positions
Head of research laboratory, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center (affiliated to Tel Aviv University).

Research
Our focus and goals at the lab are to establish innovative solutions and better ways to improve the current treatment for inflammatory/autoimmune and rheumatic diseases using the following research strategies:

1. Improved drug delivery using specific tissue-homing small extracellular vesicles (‘exosomes’) in inflammatory/autoimmune and rheumatic diseases: We hypothesized that isolation of tissue-specific homing exosomes derived from autologous blood sample (serum, plasma and/or activated peripheral blood mononuclear cells) may improve the delivery of FDA-approved anti-inflammatory drugs which will be encapsulated into these exosomes and will be injected back to the patient. Tissue-specific homing receptors (such as: integrins or chemokine receptors) being expressed on the surface of exosomes will be used to enrich these tissue-specific homing exosomes using commercially available techniques (immunomagnetic separation). The drug-loaded exosomes can be injected back to the diseased

A

<table>
<thead>
<tr>
<th>WB analysis from exosome</th>
<th>Healthy RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD81 (exosomal marker): 22-26kDa</td>
<td></td>
</tr>
<tr>
<td>CD9 (exosomal marker): 24kDa</td>
<td></td>
</tr>
<tr>
<td>αv integrin: 130 kDa</td>
<td></td>
</tr>
<tr>
<td>β3 integrin: 97 kDa</td>
<td></td>
</tr>
<tr>
<td>β-Actin: 42 kDa</td>
<td></td>
</tr>
</tbody>
</table>

The specific synovial-homing receptor αvβ3 integrin is expressed on serum-derived exosomes (CD9+/CD81+) from rheumatoid arthritis (RA) mice. A. Total exosomes were isolated from pool of serum samples of RA mice (Collagen-induced arthritis model) (n=5) and Sham (n=5) mice. Exosomes homogenates were separated using SDS-PAGE and subjected to immunoblotting with antibodies against CD9, CD81, αv, β3 (Santa Cruz Biotechnology) and β-actin (R&D system). Total 7 µg protein were loaded into each well. B. Transmission Electro Microscopy (TEM) analysis shows a nano-size vesicle (~40nm) of exosomes derived from sera of RA mice.

B
subjects and will naturally find their way to the inflamed tissue. We believe that this approach will increase the specificity and efficiency of the current treatment, therefore it will reduce side effects as compare to the delivery of free drugs and will improve the quality of life of patients with inflammatory/autoimmune/rheumatic diseases.

2. Exploring the effect of novel therapeutic candidates: anti-inflammatory small molecules and/or natural compounds (such as plant-derived cannabinoids) in experimental inflammatory/autoimmune disease. (Animal models of Collagen-induced arthritis, DSS-induced Colitis, Bleomycin-induced systemic sclerosis etc.). Moreover, our lab exploring the effect of these therapeutic candidates on inflammatory mediators – *in vitro* (using relevant primary cells and/or cell lines) and *ex vivo*, in patients-derived blood components (such as PBMCs) and/or in their relevant inflamed tissue biopsies.

3. Our lab has expertise also in the field of autoantibodies, through the measurement of patient-derived panel of autoantibodies, isolation of autoantibodies (total IgG/IgM or specific IgGs) from blood samples of patients and through exploring their potential pathogenic role using passive transfer of these antibodies into naïve animals following evaluation of clinical manifestations (reported by the patients) in the animals.

4. We are focusing also in exploring the potential immune-related pathomechanism of fibromyalgia syndrome – through examination of the effect of various conventional and unconventional treatments (Neurofeedback, cannabinoids etc.) on patient-derived immune system components and neuroinflammatory mediators.

5. Our lab is also focusing on the effect of dangerous adjuvants (such as silicone, metal implants etc) on human health in general and more specifically on the immune system.

Publications

Reviews

<table>
<thead>
<tr>
<th>Grants</th>
<th>2021-2023</th>
<th>2020-2021</th>
<th>2020-2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducing networking gaps between Rīga Stradiņš University (RSU) and internationally – leading counterparts in viral infection-induced autoimmunity research, Educational Grant of EU; Role: Collaborator</td>
<td>Laboratory of Mosaic of Autoimmunity (LMA); Saint Petersburg State University; Role: Collaborator</td>
<td>Sheba Medical Center: Second chance: Improved drug delivery using gut-specific homing small extracellular vesicles for the treatment of inflammatory bowel diseases, Role: PI</td>
<td></td>
</tr>
</tbody>
</table>
Primary Immunodeficiencies (PIDs) – From Bed to Bench and Back

Positions
Head, Pediatric Department, Immunology Services

Research
Our research focuses on:
1. Primary immunodeficiencies – finding and characterizing novel diseases
2. Newborn screening for immunodeficiency
3. Investigating fetal immunity in health and diseases
4. Next generation sequencing to illustrate and understand for T and B cell receptor repertoires

Our pediatric immunology clinic and laboratory are dedicated to the diagnostic evaluation, treatment, monitoring and research of patients with disorders of the immune system, including congenital immunodeficiencies and autoimmune diseases. In addition, we are leading Israel in the field of newborn screening for severe immunodeficiency and recently became the national laboratory for validating results obtained from this program. We are acknowledged as a “Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency” (www.jmfworld.org) – which is the “gold standard” benchmark for excellence in this field. Part of our service is in-house laboratory which is well-experienced in the most advanced immunological and molecular assays that are used world-wide to assess immune function. We are interested in thymus functions in health (embryonic development and neonates) and in PIDs, as reflected by V(D)J rearrangement and thymic output of T cells, as well as B cell development, using advanced molecular methods, such as TREC and KREC analyses and next generation sequencing (NGS). We use whole exome sequencing (WES) to discover new PIDs. This approach led us to identify to date several novel mutations that cause inherited PIDs. We found that mutations in two of these mutated novel genes, VPS45 (New England Journal of Medicine, 2013) and STN1 (Journal of Experimental Medicine, 2016) cause syndromic PIDs, i.e. severe congenital neutropenia (SCN5) and Coats plus, respectively. In our large PID cohort of patients some mutations were found in genes that have not been known until now to be involved in the development of the immune system. We continue to find such mutations in novel genes that cause PIDs.
with atypical clinical characteristics and study their pathophysiology mechanisms, using also a zebrafish model. Characterization of proteins encoded by the activity of these genes in immune cells of patients compared with those of healthy individuals enable us a better understanding of the development and function of the immune system, as well as designing new targeted drugs or gene therapy to the immune deficiency the patients suffer from. Another interest in our lab is to investigate T and B cell development and repertoire productions in health and disease including the development of the immune system in fetal life (Science Translational Medicine, 2015). We have used traditional methodologies (e.g. flow cytometry or PCR analysis) to illustrate cell repertoire in patients with immunodeficiency, autoimmunity and in developing human embryos. Yet the recent development of next generation sequencing (NGS) techniques enabled analysis of these immune repertoires to a depth that was unreached before. This was already used by us in various pathologic conditions including immunodeficiencies, autoimmune disorders and infections. One of the advantages of the NGS technology over the traditional methodologies for investigation of the expanded clones and for clinical follow-up is that it ensures finding of the clonal receptor rearrangements in every patient due to the enormous depth of sequencing. It allows for the detection of multiple sub-clones, specific preferential usage of V, D and J gene segments and complementarity determining region 3 (CDR3) characteristics and to look for clonotypic sharing in patients with a similar disease. In addition, with the use of the CRISPR-Cas9 genome editing platform, we are modeling relevant primary immunodeficiency causing genes, such as RAG1/2, DCLRE1C (artemis) and ATM in wild type human lymphocytic cell-lines, and are using this ‘bed to bench and back’ approach to correct these mutated genes as a strategy to develop innovative curative gene correction therapy in patients’ cells.

Publications

Novel Pathways Involved in Normal Hematopoiesis and Congenital Hematological Disorders

Positions
Lecturer, Faculty of Medicine
Senior Physician, Hematology Unit, Rina Zaizov Hematology-Oncology Division, Schneider Children’s Medical Center of Israel

Research
We study pathways involved in normal and diseased hematopoiesis. All our research aims emerge from clinical dilemmas.

Our research is divided into:
1. The study of severe congenital neutropenia and cyclic neutropenia. Severe congenital neutropenia (SCN) is a mono-lineage bone marrow failure syndrome, characterized by early onset of neutropenia accompanied by severe infections. Bone marrow examination demonstrates promyelocytic maturation arrest. Cyclic neutropenia (CyN) is a congenital syndrome characterized by oscillations of the neutrophil counts with a nadir occurring every 21 days. Mutations in the ELANE gene can cause both diseases. We aim to identify key signaling pathways underlying SCN and CyN and their phenotypic differences, in order to establish better diagnostic criteria and novel therapeutic approaches. We use induced pluripotent stem cells (iPSCs) generated from patients with congenital neutropenias. Our iPSC system recapitulates the myeloid differentiation arrest found in bone marrows of patients with SCN and shows a difference in the myeloid differentiation potential between SCN and CyN (Figure).

2. Elucidating the myeloid transformation processes in patients with congenital neutropenia. One severe complication of SCN is the development of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). An early event in
this process involves acquisition of truncating mutations in the receptor of the granulocyte-colony stimulating factor (G-CSF), which are unique to patients with SCN. We aim to understand the signal transduction pathways triggered by the mutated G-CSF receptor in patients with congenital neutropenia in order to improve the diagnostic, preventive and therapeutic approaches for leukemia development. This study is performed on patients-derived iPSCs using the CRISPR/Cas9 gene editing system for the introduction of somatic mutations that are similar to those found in patients.

3. Understanding the molecular processes involved in rare congenital anemia syndromes. The regulation of erythroid gene expression and erythroid differentiation is governed by the interplay between GATA1 and GATA2, that share a common DNA binding motif, and a key event in normal erythropoiesis is a “switch” in the expression of the two transcription factors. We aim to study the roles of GATA1 and GATA2 in initiating and driving red blood cell differentiation and their contribution to a rare anemia syndrome caused by mutations in GATA1. This study is preformed in immortalized human CD34+ cells in combination with gene editing methods.

Publications

Steinberg-Shemer O, Tamary H. Gray platelet syndrome mimicking atypical autoimmune lymphoproliferative syndrome: the key is in the blood smear. Blood. 2018;131(24):2737.

Grants

<table>
<thead>
<tr>
<th>2020-2023</th>
<th>2019-2021</th>
<th>2018-2020</th>
</tr>
</thead>
</table>
Molecular and Cellular Studies of Rare Disorders of Hematopoiesis

Positions
Professor of Pediatrics, Faculty of Medicine
Director, Hematology Unit, Schneider Children’s Medical Center of Israel

Research
We study rare hematological disorders, using different cellular model systems. The roles of codanin-1 in normal hematopoiesis and in the pathogenesis of congenital dyserythropoietic anemia type I (CDA I). CDA I is a rare disorder causing anemia and bone abnormalities. We have identified CDAN1, the gene causing CDA I, in 2002, by linkage analysis. Codanin-1, encoded by CDAN1, is ubiquitously expressed and necessary for early embryonic development. However, its roles in hematopoiesis are not known. We generated erythroid tissue specific KO mice, and identified early anemia and embryonic lethality caused by a complete lack of codanin-1. We are also utilizing other model systems for the disease, including K562 cell line, murine fetal liver erythroid differentiation system, and primary human erythroid cultures. Understanding the roles of codanin-1 in red blood cells development may shed light on specialized processes involved in erythropoiesis. Even more significant, elucidating the role of codanin-1 in CDA I may help develop novel therapeutic approaches to alleviate the anemia in these patients.

The pathomechanisms of severe congenital neutropenia and cyclic neutropenia through patients will be understood by using derived induced pluripotent stem cells. We use the cutting edge technology of induced pluripotent stem cells generated from patients with congenital neutropenia as a model system for severe congenital neutropenia and cyclic neutropenia, caused by ELANE mutations. We aim to define the granulopoietic defects caused by these mutations, establish a genotype-phenotype correlation of iPSC lines carrying ELANE mutations causing both diseases, and study novel potential therapies by pharmacological correction of the granulopoietic defects detected.

Publications

Vibrio proteolyticus bacteria infecting macrophages.
Credit: Dor Salomon
Mechanisms of Virulence and Drug Resistance in Pathogenic Fungi

Positions
Senior Lecturer, School of Medicine
Head, Infectious Diseases Unit, Tel Aviv Sourasky Medical Center
Director, Molecular Mycology Laboratory, Tel Aviv Sourasky Medical Center

Research
We study the pathobiology and epidemiology of medically important fungi. Fungal infections are encountered with increasing frequency in advanced medical settings, and are associated with high mortality rates. Specifically, Candida species are frequent causes of hospital-acquired bloodstream infection, particularly in the intensive care setting, whereas Aspergillus species and other pathogenic filamentous fungi cause sinopulmonary and disseminated infections in immunocompromised patients.

Our work has outlined the incidence, drug resistance patterns, geographic distribution, risk factors and outcomes of Candida bloodstream infections in Israeli hospitals. A multicenter effort is currently underway to study the epidemiology of invasive mold infections in Israel.

We are specifically interested in Candida glabrata, an opportunistic pathogen notable for its limited susceptibility to antifungal agents and its tendency to rapidly evolve resistance following exposure to antifungal azole drugs. Using population analysis techniques, we showed that clinical strains of C. glabrata are often heterogenous at the cell-population level with respect drug resistance. This phenomenon, termed heteroresistance, facilitates the expansion of drug-resistant subpopulations during antifungal treatment. We discovered that heteroresistance is associated with over-expression of efflux transporters, and that heteroresistant strains can persist in vivo despite high-dose azole treatment. Heteroresistance is not captured by standard susceptibility tests performed at clinical laboratories, and may explain the mismatch between susceptibility data and treatment outcomes.

In vivo assay for angiotropism and angioinvasion: Matrigel plugs implanted subcutaneously induce the formation of endothelial cell networks (black arrowheads). A. fumigatus forms hyphae (white arrowheads) that invade neovessels. Genetic manipulation is used to dissect A. fumigatus genes responsible for angiotropism and angioinvasion.
Additional work has focused on the emerging species *Candida auris*. Unknown until recently, *C. auris* is a multidrug resistant organism that has caused simultaneous outbreaks of invasive infections in multiple countries in Europe, North and South America, Africa and Asia. We characterized the drug resistance and pathogenicity traits of *C. auris* isolates. Ongoing work at our lab aims to define optimal treatment strategies for *C. auris* infection using in vitro and animal models.

Invasion of host blood vessels is characteristic of invasive Aspergillus fumigatus infection. We have previously shown that angioinvasive *A. fumigatus* produces gliotoxin, a secondary metabolite which down-regulates host angiogenesis. We hypothesized that angioinvasion is essential for *A. fumigatus* virulence. Research conducted at the Tel Aviv Medical Center Mycology laboratory and at the laboratory of Prof. Nir Osherov at the School of Medicine aims to understand the genetic underpinnings of angiotropism and angioinvasion. We predict that this line of research will uncover novel targets for the treatment and prevention of invasive aspergillosis.

Publications

Heteroresistance to fluconazole is a continuously distributed phenotype among *Candida glabrata* clinical strains associated with in vivo persistence. mBio 2016; 7: e00655-16.

Infectious Diseases

Positions
Head of Department, Medicine E, Rabin Medical Center, Beilinson Hospital
Faculty of Medicine
Editor-in-Chief, Clinical Microbiology and Infection
Director, Infectious Diseases University Research Center, Rabin Medical Center, Beilinson Hospital

Research
Our research focuses on improving the treatment and management of patients with severe infections and at the same time, focusing on interventions that will reduce the rise of resistance to antibiotics in microorganisms. Our main goal is to reduce mortality and suffering caused to patients by these infections.

Together with partners in Denmark, we have developed a computerized decision support system for antibiotic treatment in patients with moderate to severe infections. It was tested in a multi-center trial in three countries, and was shown to improve the outcome of patients, while at the same time reducing unnecessary use of antibiotics and hospital stay.

Our studies, systematic reviews and meta-analyses and clinical studies, served to change international guidelines and improve patient’s management. For example:

- Study that stopped the use of single-dose antibiotics for urinary tract infection.
- A clear evidence on the benefit of appropriate empirical antibiotic treatment
- Antibiotic prophylaxis for neutropenic patients.
- Discontinuing the use of beta-lactam/aminoglycoside combinations.
- Proof that some antibiotics (tigecycline and cefipime) are less effective than others.
- Current projects

- Optimizing diagnosis, treatment and outcome definitions in elderly patients with bacterial infections (Ministry of Science, Technology and Space).
- The impact of a decision support system for antibiotic decisions on appropriateness of treatment, morbidity and mortality, consumption of antibiotics and resistance to antibiotic drugs (The Israeli national institute for health policy research).
- Combatting Bacterial Resistance in Europe – Molecules against Gram Negative Infections (IMI – COMBACTE-MAGNET).

Publications

participant data meta-analysis. Influenza Other Respir Viruses. 2016 May;10(3):192-204.

Leibovici L. Immediate rejection of manuscripts without peer review at the CMI. Clin Microbiol Infect. 2017;23(8):499.

Leibovici L, Xu JF. CMI workshop in Shanghai, China. Clin Microbiol Infect. 2017

Leibovici L. Are we making an impact? Clin Microbiol Infect. 2017

Reviews

Leibovici L. Ethical considerations in research published in the CMI. Clin Microbiol Infect. 2016 Dec;22(12):957.

Grants

2016-2021 IMI – COMBACTE-MAGNET: Combatting Bacterial Resistance in Europe – Molecules Against Gram Negative Infections
Musculoskeletal Disorders
Investigating the Biomechanical Properties and Healing of Rotator Cuff Tendons

COX2-dependent stimulation of tendon healing by Atorvastatin (ATV). A. Rotator cuff repair model in rats. Under anesthesia, skin incision over the deltoid muscle (1); the deltoïd is gently split (2) to uncover the supraspinatus tendon. The tendon is then cut adjacent to its footprint on the humeral head (3) and repositioned by suturing to the humerus (4). B. After 3 weeks, biomechanical testing in tension shows higher loads to failure and stiffness values in the ATV group compared with control, Celecoxib (CEL) and CEL+ATV groups.
Positions
Senior Lecturer, Faculty of Medicine
Committee Member, Tel Aviv Medical Center
Institutional Review Board

Research
We study the biomechanical properties of rotator cuff tendons in various scenarios. Rotator cuff tears are a leading cause of shoulder pain and dysfunction in elderly as well as young population. Tendon healing is often impaired and requires surgical intervention. While technology and surgical techniques developed enormously during the last decades, biologic factors are still the limiting factor in tendon healing and re-tear. Studies are performed using a rat model imitating tendon tears and surgical repairs. Tendon healing is studied under various conditions including pharmacological agents and magnetic fields. The effect of pharmacologic agents on bone density and bone-tendon interface is also studied.

Publications

Investigating Gait, Balance, Falls and Motor-Cognitive Interactions in Aging and Disease

Positions
Professor, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University
Director, The Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center
Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center
Movement Disorders Society Task Force on Technology
Gait Advisory Committee for the Michael J. Fox Foundation for Parkinson’s Research
International Society of Posture and Gait Research Strategic Planning Committee
Board of Directors, International Society for the Measurement of Physical Behaviour
Associate Editor, Journal of NeuroEngineering & Rehabilitation
Associate Editor, Journals of Gerontology: Medical Sciences
Editorial Board, Gait & Posture

Review Editor in Movement Disorders, Frontiers in Neurology
American Federation of Aging Research’s National Scientific Advisory Council

Research
At the Center for the Study of Movement, Cognition, and Mobility, we investigate balance, walking, and falls as well as the prevention and restoration of loss of mobility, motor function, and cognition associated with aging and neurological disease (e.g., Parkinson’s, multiple sclerosis, Alzheimer’s, post-stroke, children with ADHD). Our research team leverages a combination of clinical, engineering and neuroscience expertise to achieve three main objectives: 1) acquire new understandings of the mechanisms that contribute to cognitive and motor function and their changes with aging and disease; 2) construct and validate new methods and tools for early detection and tracking of cognitive and motor decline associated with aging and neuro-degeneration. This includes the development of new “bio-markers” that can be used for early detection and tracking of cognitive and motor decline associated with aging and neuro-degeneration.

Examples of the modalities that we use to study, assess and treat gait, balance, falls and motor-cognitive interactions.

Mechanisms Assessment Treatment

Examples of the modalities that we use to study, assess and treat gait, balance, falls and motor-cognitive interactions.
diagnosis, prognosis, and for quantitative tracking of disease progression, aging, and the response to therapeutic interventions (e.g., at-home monitoring using wearable devices and machine learning) and 3) develop novel methods for prevention and treatment (e.g., using virtual reality, pharmacologic therapy, motor learning, non-invasive brain stimulation).

Examples of ongoing projects in the lab include a) fMRI, EEG, and fNIRS imaging of balance and gait in Parkinson’s disease and aging during usual walking and during challenging conditions such as when negotiating obstacles; b) virtual-reality based intervention for gait and cognitive function in older adults and patients with multiple sclerosis; c) transcranial direct current stimulation to study the mechanisms and to ameliorate freezing of gait in patients with Parkinson’s disease; d) Smartphone-based intervention to improve gait and cognition and to reduce fall risk in older adults; e) transcranial direct current stimulation to study the mechanisms and to reduce fall risk and the effects of dual tasking in older adults; f) investigation of genetic contributions to gait and mobility; g) 24/7 monitoring of gait and mobility using body-fixed sensors to study the effects of osteoarthritis on mobility and to identify early markers of Parkinson’s disease. h) neural network studies of cognitive aging and mobility; i) effects of high intensity exercise on cognition, gait and mobility in older adults with mild cognitive impairment.

Publications

Manuscripts

Maidan I, Rosenberg-Katz K, Jacob Y, Giladi N, **Hausdorff JM**, Mirelman A. Disparate effects of...

Reviews

Grants

2016-2020 Michael J Fox Foundation for Parkinson’s Research, The Effects of Multi-focal Transcranial Direct Current Stimulation on Freezing of Gait in Patients with Parkinson’s Disease: A Randomized Controlled Trial (JM Hausdorff, PI)

2016-2021 National Institutes of Health, Racial Differences in Late-Life Cognitive decline and risk of Alzheimer’s Disease (L Barnes, PI; JM Hausdorff Israeli PI)

2017-2022 National Institutes of Health, Impaired Gait in Older Adults: Pathologies of Alzheimer’s disease and Related Disorders (A Buchman, PI; JM Hausdorff Israeli PI)

2017-2021 National Institutes of Health, Exploring Cognitive Aging Using Reference Ability
Neural Networks (Y Stern PI; JM Hausdorff Israeli PI) 2017-2021 National Health Medical Research Council (Australia) BRAIN Training Trial: Balance, Resistance, or Interval Training Trial: A Randomised Controlled Trial of Three Exercise Modalities in Mild Cognitive Impairment (M Fiatarone-Singh PI; JM Hausdorff Israeli PI)
Investigating the Pathophysiology and Therapeutic Option for Muscular Dystrophy

Positions
Director, Institute of Neurology
Schneider Children’s Medical Center of Israel
Professor, Faculty of Medicine
Chair, Israeli Child Neurologist Association

Research
The main goal of our research is to develop new therapies for Duchenne and Becker muscular dystrophy (DMD and BMD) and other neuromuscular dystrophies which currently have no cure. DMD is the most common muscular dystrophy in children. DMD patients suffer from progressive muscle atrophy and weakness, lose independent ambulation by the age of 13 years and often die in their third decade.

Our laboratory focuses on understanding biochemical and molecular mechanisms leading to muscle dystrophy and the significant processes contributing to its secondary effects and disease progression, such as chronic inflammation and fibrosis. We are using diverse anti-inflammatory and anti-fibrotic agents and also combination therapies, to tackle the massive inflammation and fibrosis to improve outcomes in mouse models of DMD and of congenital muscular dystrophy.

Figure 1. Model for the impaired regeneration mechanism in dy2J/dy2J mouse skeletal muscle (Yanay et al 2019).
dystrophy (CMD). We also combined different novel strategies of gene therapy, small molecules and nanotechnology such as liposomes, exosomes and other nanoparticles to deliver drugs specifically to muscles. Diverse methodologies, including mouse models, human muscle biopsies, primary muscle satellite cells, and bioinformatics techniques are employed. We use novel high throughput sequencing (RNA-Seq) platform enabling us to identify novel genes that promote muscle regeneration and seek to extend the animal findings to humans. In addition to pure translational studies, biomarkers in our laboratory are evaluated as an aid to study Duchenne and Becker muscular dystrophy patients’ physical activity and performance.

Publications

Musculoskeletal Disorders

Chapters and Editorials

Neurological & Psychiatric Diseases

Functional MRI results, scanned at the Strauss Computational Neuroimaging Center, Tel Aviv University
Credit: Tom Schonberg
Laboratory of Clinical Neuroscience

Positions
Head of Laboratory, Felsenstein Medical Research Center
Senior Lecturer, Faculty of Medicine

Research
Our laboratory is interested in the development (genesis) and the pathophysiology of neurological disorders. We are highly translational and are trying to find solutions starting with real-life clinical problems with our methodology in the laboratory. Besides general neurology, we are focusing on the development of epilepsy (epileptogenesis) and the possibility to find a preventive treatment for patients about to develop epilepsy instead of treating, as today, the symptoms: epileptic seizures.

Our methods in the laboratory include electroencephalogram EEG in living and freely moving rodents as well as video-EEG recordings. Hereby, seizures can be detected, and quantified, and possible preventive treatment assessed. Furthermore, we are using human EEG in a highly computational analysis developed by Dr. Oded Shor to separate patient groups (dementia, depression, schizophrenia and patients with epilepsy) by using a short EEG recording. Our goal here is to predict diseases using brain signature of the EEG even before symptom onset. In collaboration with the genetics department at Rabin Medical Center, we are using protein modelling and normal-mode-analysis (NMA) to re-classify possible single nucleotide mutations previously not known to have a physiological impact. This is done by a method created by our post-doc Dr. Oded Shor and includes the use of in-silico protein dynamics with entropy quantification to compare different proteins. We are a very fluid group and open for new projects and very much appreciate our close collaboration with the team of Prof. Daniel Offen at the same institute. Our strengths lies in the ability to be close to patients problems through clinics and ward rounds as well as having highly qualified mathematical and computational knowledge.

Publications
Khlebtovsky A, Djaldetti R, Rodity Y, Keret O, Tsvetov G, Slutzcki-Shraga I, Benninger F. Progression of

Oliver, K; Franceschetti, S; Milligan, Carol Muona, M; Mandelstam, S; Canafoglia, L; Boguszewska-Chachulska, A; Korczyn, A; Bisulli, F; Di Bonaventura, C; Ragona, F; Michelucci, R; Ben-Zeev, B; Straussberg, R; Panzica, F; Massano, J; Friedman, D; Crespel, A; Engelsen, B; Andermann, F; Andermann, E; Spodor, K; Lasek-Bal, A; Riguzzi, P; Pasini, E; Tinuper, P; Licchetta, L; Gardella, E; Lindenaau, M; Wulf, A; Møller, R; **Benninger F**, Afawi, Z; Rubboli, G; Reid, C; Majdovic, S; Lerche, H; Lehesjoki, A-E; Petrou, S; Berkovic, S. Myoclonus epilepsy and ataxia due to KCNC1 mutation: Analysis of 20 cases and and K+ channel properties. Annals of Neurology 2017;81(5):677-689.

Goldstein L, Shihman B, Amiel N, **Benninger F**. Termination of pregnancy in women with epilepsy – A retrospective single center study. Epilepsy Behav. 2018; 87:89-91.

Investigating Cognitive and Emotional Difficulties that Typify Different Psychopathologies in Life Span: Therapeutic Brain Stimulation

Positions
Co-Cordinator, Course of Continuing Medical Education in Psychiatry, TAU
Head, Child and Adolescent Outpatient Clinic “Shalvata”
Head, Cognitive and Emotion Research Lab

Research
Our research work is embedded in our clinical dilemmas and difficulties. Our studies have focused on: Cognitive and emotional domains in the course and development of different pathologies, especially depression and ADHD. We are interested in the interplay between anxiety and ADHD and a differential effect of Methylphenidate on state anxiety. We were able to show effects of depression on cognition in depressed adolescents with some cognitive domains related to state the depressive episode and others to the trait. In recent years, our studies have focused on brain stimulation, especially deep transcranial magnetic stimulation (rTMS), effects of pharmacoe and psychotherapy and placebo on emotions and cognition.

Publications

Grants
The Israel National Health Policy (NIHP) grant “Collecting routine outcome measures” in the mental health system”. 2014-present
Investigating Chronic and Acute Pain Mechanisms and New Ways for Pain Modulation and Relief

Positions
Head, Institute for Pain Medicine, Sourasky Medical Center

Research
Chronic pain is a complex physiological condition affecting around 17% of the population. While acute pain, following noxious stimuli or tissue damage, is useful as a warning sign and usually disappears when the trauma is over, chronic pain persists even though the tissue has been healed. Moreover, chronic pain often triggers an array of neurologic, immunologic, physical and psychological changes that worsen the patient’s situation and are not related to the original cause of the pain.

![Graphs showing pain and unpleasantness scores]

Figure: (Top panel) Mean pain and unpleasantness scores. Mean pain (A, left panel) and unpleasantness scores (B, right panel) following: a painful cold stimulus (baseline); natural meditation; meditation after placebo administration; and meditation after naloxone administration, respectively. Bars represent standard error. (Bottom panel) The differences in pain scores following naloxone vs placebo and participants’ mindfulness meditation (MM) experience. The positive correlation of the response to intervention with years of experience suggests reduced response to placebo with increasing experience.
At the Institute for Pain Medicine, we focus on the biochemical basis of pain transmission and pain relieving treatments. For example, in a recent study we showed, for the first time, that meditation involves endogenous opioid pathways, mediating its analgesic effect. In another study, we investigated gender effect on the relationships between parasympathetic activity and pain modulation. We found that women demonstrated higher parasympathetic activity compared to men, which resulted in a subsequent lower pain perception. In a third study, we showed that many patients suffering from complex regional pain syndrome (CRPS), are diagnosed with alexithymia which can be regarded as an outcome of CRPS, highlighting the importance of early CRPS diagnosis and support. These and additional research findings hold promising therapeutic implications and further elucidate the fine mechanisms involved in human pain modulation.

Future research/programs: TMS TDCS Biofeedback, Pain rehabilitation programs, Cannabis database

Publications

The Pathophysiology and Development of Movement Disorders and Specifically Parkinson’s Disease

Positions

Research

We have been leading a large-scale research endeavor to clinically and epidemiologically characterize the Ashkenazi Jewish Parkinson’s Disease (PD) population in Israel and to identify genes that influence the risk of developing the disease in this population. In recent years our group has conducted groundbreaking research on the influence of mutations in two major genes – LRRK2 and GBA. The research was first aimed at identifying the prevalence of mutations in these genes in patients with PD and explores differences in phenotype. Our research then evolved to include first degree relatives of these patients to explore early markers of disease in healthy asymptomatic carriers. In addition to examining the contribution of risk mutations, the existence of protective haplotypes or genes was also investigated. For example, recent work has shown that immune system B cells may contribute to protection from the disease or influence its progression. The above described research has opened new avenues of exploring disease identification, progression and even prediction and could potentially impact treatments in PD.

We are also keenly interested in understanding the relationship between cognitive functions and quality of gait, as well as the risk of falling and the neurophysiological basis of the phenomenon of Freezing of Gait (FOG) in Parkinsonism. Our early work on identifying and quantifying FOG resulted in a standardized validated and widely used questionnaire (FOGQ). In addition, our group makes use of accelerometers and gyroscopes to record gait during usual activities, in both the laboratory setting and in the home environment, to better understand changes in performance during daily activities, medication cycles, habits and behavior. Using specified indices, the importance of the variance between different steps was identified, as a measure of fall risk and as a sensitive measure of sub-clinical changes, susceptibility to cognitive loads and perhaps a marker of disease.

In recent years, we have also been involved in exploring new interventions for the patients with PD. These include exploring the effects of tDCS stimulation and virtual reality to improve motor-cognitive function and functional abilities of patients with PD. This work builds on the study of movement disorders, on the one hand, and on examining ways to ameliorate motor symptoms in patients with PD.

In parallel, our group has been heavily involved in clinical trials phase 1-4 with new technologies treating movement disorders of different kinds, as well as community-based epidemiological studies. Using the database of the second largest HMO in Israel (Macabbi Health Care), we characterized PD in Israel, as well as the risks to develop Parkinson and potential protective factors.

Publications

Maidan I, Fahoum F, Shustak S, Gazit E, Patashov D, Tchertov D, Giladi N, Hausdorff JM, Mirelman

Maidan I, Bernad-Elazari H, Giladi N, Hausdorff JM, Mirelman A. When is Higher Level Cognitive Control Needed for Locomotor Tasks Among Patients with Parkinson's Disease? Brain Topography, 30, 531-538, 2017

Mancini M, Smulders K, Cohen RG, Horak FB, Giladi N, Nutt JG. The clinical significance of freezing while turning in Parkinson’s disease. Neuroscience, 343, 222-228, 2017

Grants

2016-2021 Biogen, USA (PI), Identifying markers of disease in a population at risk for developing Parkinson’s disease.

2018-2022 Center of Excellence, Support Care and Outreach, National Parkinson Foundation
Using Functional Imaging to Investigate Affective Neuroscience

Positions
Professor, Faculty of Medicine, Sagol School of Neuroscience
Director, Tel Aviv Center for Brain Function, Tel Aviv Sourasky Medical Center
Clinical Director, Presurgical Brain Mapping Service, Tel Aviv Sourasky Medical Center

Research
Our group has been applying advanced brain imaging techniques, including functional magnetic resonance imaging (fMRI), Diffusion Tensor imaging (DTI) intracranial and scalp electroencephalography (EEG) and magnetic encephalography (MEG) to study mental processing in the healthy and diseased human brain. Our research theme has focused on portraying the neural underpinnings of individual emotional experience and expression. The accumulative work in affective neuroscience in the last two decades has paved the way for promising translations of imaging technologies for the cure to mental suffering. For example, the lab has pioneered the development of a new real-time imaging approach for the non-invasive identification of “neural finger-prints” that can reliably depict deep limbic areas through trans-modalities’ learning computation (e.g. from fMRI to EEG). This new method enables accessible bed-side Brain Computer Interface procedures aimed to alleviate and/or prevent stress related psychopathologies.

Publications

Investigating the Vestibular and Ocular Motor Systems

Positions

Professor, Department of Neurology, Faculty of Medicine.

Director, Dizziness and Balance Disorders Service, Department of Neurology, Meir Medical Center

Head, Machado-Joseph Disease (MJD) Clinic (recognized by the Israel Ministry of Health)

Research

The vestibular system stabilizes gaze during head movements, ensuring clear vision of the seen world. This is mainly accomplished by the vestibulo-ocular reflex (VOR), which produces compensatory (opposite) eye movements for head rotations. Then, eye position in space is held steady and images do not slip on the retina. During everyday life activities, the vestibular system acts with the optokinetic and visual fixation systems to hold images of the seen world steady on the retina; while saccades, smooth pursuit and vergence eye movements obtain and hold images of objects of interest on the fovea. Moreover, in everyday life activities, the vestibular, visual, ocular motor, proprioceptive and motor systems work together to reach exquisite balance, equilibrium and perform accurate motor tasks. Interaction between sensory (vestibular, visual, proprioceptive) and motor (eye movement, locomotion) systems; i.e sensory-motor integration is essential to maintain balance, equilibrium and perform accurate motor tasks including locomotion. Our Vestibular and Eye Movement Laboratory is fully equipped with modern systems for measuring vestibular function, all type of eye movements and balance and gait function.

Our three major ongoing interest and research projects include:

1. Vestibulo-Ocular Reflex (VOR) and eye movement abnormalities as possible biomarkers of Spinocerebellar Ataxia Type 3.

Spinocerebellar Ataxia Type 3 (SCA-3), also known as Machado-Joseph Disease (MJD), is an autosomal dominant neurodegenerative disorder for which genetic testing can reveal those at risk for developing the disease. Quantitative measures that would identify pre-symptomatic gene carriers at the threshold of clinical diagnosis would be extremely valuable in early diagnosis, tracking disease progression, and assessing treatment. This is a crucial subject of investigation not only in SCA-3 but also in other neurodegenerative diseases. Eye movement abnormalities have been reported as reliable neurophysiologic biomarker and even proposed as “a window into disease prevention.” By using bedside vestibular tests and laboratory recording of eye movements, we have described severe VOR deficit and different saccadic abnormalities in patients with SCA-3. Our specific aim is to investigate if VOR and eye movements can be used as biomarkers to quantify the appearance and progress of SCA-3 even pre-symptomatically.

2. Dizziness, vertigo, balance: Clinical and basic research

Dizziness, vertigo and problems with balance are among the most frequent complaints at all ages. Our current research focuses on the following topics:

The contribution of VOR impairment to the perceptual and emotional experience of blurred vision, dizziness and oscillopsia (in collaboration with the School of Psychological Sciences, Psychobiology Research Unit, Tel Aviv University).

The relationship between vestibular pathology and the development of anxiety, balance impairment and spatial disorientation (in collaboration with the School of Psychological Sciences, Psychobiology Research Unit, Tel Aviv University).

The evaluation of a novel specs device with stabilizing marks on the peripheral visual field to alleviate dizziness.

The search for novel physical and virtual reality strategies to improve balance and alleviate dizziness.
3. Cerebellar Disorders
As our Neurology Department at the Meir Medical Center houses the only Machado-Joseph Clinic in Israel recognized by the Ministry of Health, we therefore have access to most MJD sufferers and many other cerebellar patients in the country and focusing on the following research topics:

- Respiratory function in cerebellar degeneration.
- Autonomic nervous system function and emotional features in cerebellar diseases.
- Cognitive and behavioral changes in cerebellar degeneration.
- Physical and pharmacological treatment of cerebellar disorders.
- Language and reading difficulties in cerebellar diseases (in collaboration with the School of Education, Tel Aviv University).
- The role of the cerebellum in the hedonic experience of music (in collaboration with the Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center).

The mutational origins of Machado-Joseph Disease in the Jew Yemenite subpopulation in Israel (in collaboration with the IBMC – Institute of Molecular and Cell Biology, and IPATIMUP – Institute of Pathology and Molecular Immunology of University of Porto, Portugal).

Publications
Neurological & Psychiatric Diseases

187

Neurogenetics Syndromes

Positions
Professor, Psychiatry & Sagol School of Neuroscience
President, Israel Society of Biological Psychiatry
Director, The Behavioral Neurogenetics Center
Director, The Child Psychiatry Division, Sheba Medical Center

Research
We have been studying neurogenetics syndromes – 22q11.2 deletion syndrome (22q11.2DS) and Williams syndrome for two decades. 22q11.2DS is the most common known microdeletion syndrome. The 22q11.2DS phenotype consists of cleft and cardiovascular anomalies and immunological abnormalities. Additionally, all individuals with 22q11.2DS cope with cognitive deficits and one-third of the patients develop schizophrenia-like psychotic disorders and many manifest with autism spectrum disorder. We study the pathways leading to psychosis, autism and cognitive deficits in 22q11.2DS. Our focus is identifying cognitive, behavioral and psychiatric risk factors associated with the evolution of psychosis in 22q11.2DS. We also study molecular and immunological pathways to psychosis and to the behavioral and cognitive phenotype of the syndrome using blood samples and animal models. We collaborate with many centers from US and Europe under the umbrella of the International Brain and Behavior Consortium funded by the NIMH.

Publications

Yi JJ, Weinberger R, Moore TM, Calkins ME, Guri Y, Mcdonald-Mcginnt MD, Zackai EH, Emanuel BS, Gur RE, Gothelf D, Gur RC. Neurocognitive performance on a Computerized Neurocognitive Battery in 22q11.2...

Grants
2017–2020 National Institute of Psychobiology
Investigating the Biological Basis of Severe Mental Illness and Drug-Response Mechanisms

Positions

Head, Psychiatry Ward B, Geha Mental Health Center
Senior Lecturer, Faculty of Medicine
Senior Researcher, Biological Psychiatry Lab, Felsenstein Medical Research Center
Visiting Researcher, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK

Research

Severe mental illness includes chronic, clinically debilitating disorders such as schizophrenia and mood disorders. Among the most important prognostic factors of people suffering from schizophrenia is the adherence and clinical response to medications, notably antipsychotic compounds. There is a portion of about third of the patients who will not have enough response to medications. The only effective drug for this population is clozapine, yet only half of these patients would respond to clozapine. The rest are termed ultra-refractory patients, and currently are devoid of any evidence-based medical therapy.

Our research is focused around deciphering the biological basis of response and refractoriness to antipsychotic compounds, and especially to clozapine. We employ various research methods to study both clinical human samples and animal models of psychotic traits. The main goal of the project is to utilize the information gathered from understanding mechanisms into clinical practice as potential therapeutic targets. Current projects in our lab consist of analysis of biochemical assays of both human and animal tissues, for inflammatory markers, vitamin D, glutamate, neurotrophins, dopamine and other related neurotransmitters.

Another field of psychobiology research in our lab is the relationship between the immune system and the brain in pathological conditions. There is growing evidence that neuroinflammatory factors are involved in the pathophysiologic mechanisms leading to schizophrenia, along with genetic components. We study the 22q11.2 deletion syndrome (22q11.2DS). Individuals with this syndrome have a microdeletion of a section of the long arm of chromosome 22 and have a characteristic phenotype including immunological abnormalities and other pathologies. Individuals with 22q11.2DS have a 30% risk of developing schizophrenia. As a result, this syndrome is an optimal genetic model for studying the interaction between the immune system and schizophrenia.

Depression is another mental disorder that we are investigating in our lab in order to evaluate the relationship between abnormalities in the immune system and this mental condition.

Our lab is located at the heart of the intersection between basic science and clinical practice. It is physically located at the Belinson campus, in close proximity to the Geha Mental Health Center and the Felsenstein Medical Research Center.
proximity to the Geha Mental Health Center. The staff is composed of senior clinical researchers, as well as senior neuroscientists, working in collaboration. We aim to bring together clinical information with animal model data to eventually take back as therapeutic interventions for a population with severe illness and urgent unmet needs.

Publications – Krivoy

Grants

National Institute of Psychobiology in Israel

Stanley Medical Research Institute

The Israel National Institute for Health Policy Research

Publications – Taler

Amir M, **Taler M**, Carmel M, Michaelovsky E, Eliat T, Yablonski M, Orpaz N, Chen A, Apter A, Weizman A, Fennig S. The Relationship Between Plasma Cytokine Levels and Response to Selective Serotonin Reuptake Inhibitor Treatment in Children and Adolescents with Depression and/or Anxiety

Faculty of Medicine Research 2023 190 Neurological & Psychiatric Diseases

Grants
National Institute of Psychobiology in Israel
Positions
Senior Lecturer, Faculty of Medicine
Senior Researcher, Tel Aviv Sourasky Medical Center

Research
Our lab focuses on study neural activity undergoing complex real-life events. The research involves functional and structural brain imaging, neuropsychological assessments and physiological measurements. We apply our paradigms to neuropsychiatric disorders (e.g. mild cognitive impairment (MCI), schizophrenia, etc.), for the understanding the pathological conditions. To study factors of vulnerability in a causal manner we apply prospective imaging approach or comparing groups of affected to unaffected individuals under similar conditions (e.g. older adults and MCI, patients with schizophrenia and their unaffected siblings). While applying multi-modal paradigms, we are concentrated on developing methods for identification of “functional neuromarkers” for the disease.

Main research topics
- Investigation of human brain responses and behavior under natural conditions
- The architecture of neural circuits involving in processing of non-verbal information
- Developing functional neuromarkers for abnormal cognitive states

Hierarchical organization in healthy older adults and participants with aMCI during story processing
Publications

Positions
Faculty of Medicine
Physician-in-Chief, Lev Hasharon Medical Center

Research
We study the association between drug use and psychiatric disorders. We harness epidemiological and clinical approaches aimed at improving the understanding of mental health related aspects of drug use.

Specifically, much of our current research focuses on psychiatric outcomes of cannabis use. In recent decades, there has been a significant increase in the prevalence of cannabis use, as well as in the potency of cannabis consumed. This holds several medical and social implications, some of which are yet unclear. We focus on exploring mental-health related outcomes of cannabis use by conducting epidemiological research using large population-based samples and analysis of “big-data” based on internet-based sources. In addition, we explore specific neuro-biological and neurocognitive aspects of heavy cannabis use by utilizing advanced functional technologies such as Transcranial Magnetic Stimulation (TMS). Our studies regarding the effects of cannabis on depression and anxiety are commonly cited in World Health Organization publications, and our reports on mental-health related aspects of medical marijuana and prescription opioids have served as a basis for national policy papers.

Publications

Feingold D, Brill S, Goor-Aryeh I, Delayahu Y, Lev-Ran S. Depression and anxiety among chronic pain
patients receiving prescription opioids and medical marijuana. J Affect Disord. 2017;218:1-7

Taub S, Feingold D, Rehm J, Lev-Ran S. Patterns of Cannabis Use and Clinical Correlates among Individuals with Major Depressive Disorder and Bipolar Disorder. Compr Psychiatry. 2018;80:89-96

Yom-Tov E, Lev-Ran S. Adverse reactions associated with cannabis consumption as evident from search engine queries. JMIR Public Health Surveill. 2017;3(4)

Dr. Abigail Livny-Ezer, Ph.D.
Department of Diagnostic Imaging
Sheba Medical Center
Affiliated to Faculty of Medicine

Functional Neuroimaging Laboratory

Positions
Head, Functional Neuroimaging Laboratory, Department of Diagnostic Imaging, Sheba Medical Center, affiliated to Faculty of Medicine
Researcher, Sagol Neuroscience Center, Sheba Medical Center.

Research
The Functional NeuroImaging Lab Studies brain pathologies, in particular the way the brain reorganizes due to brain injury (TBI). We use various tools including: advanced structural MRI and fMRI protocols using tailor-made fMRI tasks to examine the deficits after TBI. We apply also extensive neuropsychological batteries in order to investigate cognitive impairments. Furthermore, we examine symptoms and emotional status using validated questionnaires and scales. This data is integrated and analyzed to identify networks and patterns which will further our understanding of neuropathology and neuronal reorganization. Our research aims to improve the prediction of brain pathology’s progression, to plan medical and rehabilitative interventions for the well-being of patients with brain diseases and head injuries.

Publications

The relation between severity of TBI and working-memory brain activation during an n-back task. Maximum intensity projections in three orthogonal views of the brain (from left to right: sagittal, coronal and axial) depict areas of significant activation (p<0.005, k>100) in a one-tailed-t statistic contrasting MR signal increases. The color scale shows t-values to the right. a, c: 2->0-back= high WM load; b, d: 2->1-back= WM load increase; CTRL= controls; mTBI= mild TBI; msTBI= moderate-severe TBI. mTBI patients further activated bilateral prefrontal and left parietal regions. msTBI patients revealed greater activation than controls in frontal, parietal and limbic regions.

Reviews

The Role of Neuroinflammation and Neurocoagulation in the Pathophysiology of Neurological Disorders

Positions
Senior Lecturer, Faculty of Medicine
Senior Neurologist and Neurophysiologist, Department of Neurology, Chaim Sheba Medical Center, Tel HaShomer

Research
Our research focuses on the understanding of the role of coagulation factors, as well as their interaction with neuroinflammation in the physiology and pathophysiology of the nervous system. We have recently discovered that thrombin, the factor that ignites the coagulation cascade, is synthesized in the brain and has a fundamental role in regulating synaptic plasticity. However, we have also shown that high concentrations of thrombin (that reach the brain upon haemorrhage) can cause seizures and epilepsy. Our research has contributed in designing novel compounds that are currently being tested in order to counteract the pathogenic actions of thrombin in the brain. We apply cutting-edge technologies including mouse genetic tools, behavioural analysis, electrophysiology and molecular and cellular biology.

Publications

The coagulation pathways play fundamental roles in the physiology and pathophysiology of the nervous system. Immunofluorescence analysis reveals the expression pattern of thrombin in the hippocampus.

Investigating Reconstruction of Peripheral and Central Nervous Systems Following Injury

Positions
Associate Professor, Faculty of Medicine
Director, Division of Peripheral Nerve Reconstruction, Tel Aviv Sourasky Medical Center

Research
The research group is involved in projects targeting improvement in nerve reconstruction and rehabilitation from several aspects, aiming at the creation of innovative treatments to both peripheral nerve (PN) and spinal cord (SC) injuries. RCNR major projects include:

Creation of artificial nerve for nerve reconstruction using the innovative Guiding Regenerative Gel (GRG) to improve and accelerate regeneration of peripheral nerve injury (PNI) with massive defect. The GRG is a special milieu that was developed in collaboration with Prof. Zvi Nevo from Tel-Aviv University, Israel. The unique composition of GRG has recently been shown to be as efficient as autologous nerve graft, promoting axonal growth and sprouting without dependence on the addition of any external growth factors. In a short-term in vivo study it was shown that GRG loaded into a conduit promoted axonal sprouting of nerve cells and enabled the regeneration of a 15mm long nerve gap in rats,
which is not possible when bridging with an empty
conduit (regeneration of up to 7mm). Therefore,
the GRG allows a simpler procedure with less side
effects, since its implantation does not involve other
nerve origin, sensation loss or cosmetic defect as
the "gold standard" treatment, therefore, GRG can
provide a promising simple of the shelf solution for
clinical use for complete PNI.

Based upon our encouraging results with the GRG,
which shed light on the utilization of this innovative
composite implant to bridge a gap, we postulate to
improve this approach and attempt reconstruction of
experimental complete SCI. Since astroglial scarring
is one of the main obstacles for axonal growth and
therefore spinal cord recovery, we have developed
an Antigliotic Guiding Regenerative Gel (AGRG)
which contains Guiding Regenerative Gel (GRG),
and was proven to promote axonal sprouting and
survival as well as antigliotic agents, which presented
in vitro highly significant antigliotic activity, while
reducing the amount of GAGs by more than 84%,
thus inhibiting scar growth barrier formation in the
site of injury.

The effect of laser phototherapy (low power
laser irradiation) was explored on neuronal cells
and peripheral nerve. In nerve cell cultures, laser
irradiation significantly accelerated axonal sprouting
studies in a model of incomplete peripheral nerve
injury showed that laser phototherapy has an
immediate protective effect, maintains functional
activity of the injured nerve, decreases scar tissue
formation at the injury site, decreases degeneration
in corresponding motor neurons of the spinal cord
and significantly increases axonal growth and
myelinization. In a model of complete peripheral
nerve injury with segmental loss, the laser-treated
group showed more intensive axonal growth and
morphological reconnection compared with the
control group (Rochkind. Neurosurgical Focus,
2009). Recently, we found that in early stages of
muscle atrophy, laser phototherapy may preserve the
denervated muscle by maintaining creatine kinase
activity and the amount of acetylcholine receptors.
(Rochkind and Shainberg, Photomed Laser Surg,
2013). The current projects are intended to test and
validate the beneficial effect of laser phototherapy
on severely injured PN with a view to move forward
to clinical study.

Publications
Rochkind S, Shainberg A. Muscle Response to
Complete Peripheral Nerve Injury: Changes of
Acetylcholine Receptor and Creatine Kinase Activity
over Time. Journal of Reconstructive Microsurgery;

Mandelbaum-Livnat M.M, Almog M, Nissan M, Loeb
E, Rochkind S. Photobiomodulation in Peripheral
Nerve Injury with Aspect to Muscle Response.
Photomedicine and Laser Surgery; 34(12):638-645;
2016.

Meyer C, Wrobel S, Raimondo S, Rochkind S,
Heimann C, Shahar A, Ziv-Polat O, Geuna S, Grothe
C, Haastert-Talini K. Peripheral Nerve Regeneration
Through Hydrogel-Enriched Chitosan Conduits
Containing Engineered Schwann Cells for Drug
The Neuronal Encoding of Human Speech

Positions
Senior Lecturer, Faculty of Medicine and Sagol School of Neuroscience
Senior Researcher and Neurophysiologist, Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center (“Ichilov”)

Research
We study the neuronal representation of speech production, perception and imagery in the human brain. We explore the acoustic, phonetic and phonological levels, and the deterioration in speech due to neurological disorders, for example in Parkinson’s disease. Our main focus is the encoding of speech features by single neurons (for example, see Figure 1). We also aim to develop brain-machine interfaces for restoring speech faculties in completely paralyzed persons by decoding their neuronal activity (i.e., inferring speech contents solely from spiking activity).

We take advantage of a unique clinical “opportunity” to work with neurosurgical patients undergoing implantation of electrodes for clinical reasons. Experiments are conducted intra-operatively with awake patients with movement disorders or in the ward, with epilepsy patients. Understanding the neuronal representation of human speech is essential for understanding the underlying mechanisms of speech disorders, for the development of new

Medial–frontal units that we have discovered, with high specificity to vowels. Raster plots and peri-stimulus time histograms of five units (rows) during the articulation of the five vowels a, e, i, u and o (columns). The response of each unit is specific to one or two vowels only. Red vertical dashed lines indicate speech onset. All vertical scale bars correspond to firing rates of 20 spikes/s (from: Tankus et al., Nature Communications, 2012).
therapeutic procedures, and for restoration of the ability to speak. The research thus bears enormous potential to greatly improve the quality of life of millions of people around the globe.

Publications

Chapter
Investigating the Biological Basis of Psychiatric Disorders

Positions
Full Professor, Faculty of Medicine
Head of the Laboratory of Biological and Molecular Psychiatry, FMRC
Head of the Research Unit, GMHC

Research
Our laboratory is driven by the belief that combining pre-clinical and clinical research is the key to modern translational research. We investigate brain mechanisms of mental disorders, currently focusing on neurodevelopmental disorders, development of new strategies for the treatment of psychotic disorders and psychopharmacology of mental disorders.

Our research goals are to identify genetic and environmental factors that contribute to the emergence of psychosis and depression, as well as cognitive decline. To this end we study the role of genetic variants, neuro-anatomical changes, profiles of gene expression and neuro-endocrine and neuro-immune alterations in the pathophysiology of these disorders. We attempt to identify neural, molecular pathways and brain-circuits associated with pathological behaviors. The accumulated results are used to develop new therapeutic strategies based on novel targets.

In collaboration with Dr. Eldar Hochman from GMHC, Dr. Michal Taler and Dr. Shay Henry Hornfeld from FMRC, we found a novel lithium mechanism of action at the BBB. In another project we developed with Dr. Konstantin Bloch, Prof. Pnina Vardi and Dr. Shay Henry Hornfeld from the FMRC, a novel strategy for the treatment of Alzheimer-like metabolic dementia that responded to transplantation of pancreatic islets. In a series of pivotal studies in the field of drug addiction that was done in collaboration with Prof. Gal Yadid from Bar Ilan University, we demonstrated...
that the neurosteroid DHEA can attenuate drug use in subjects with addictive behaviors. In collaboration with Prof. Moshe Gavish from the Technion we investigate the role of TSPO (translocator protein) in inflammation and brain diseases and we developed a liposomal delivery system for brain diseases. With Dr. Amir Krivoy from GMHC and Dr. Michal Taler we also found that the cognitive performance of treatment resistant schizophrenia patients maintained on clozapine, may benefit from the addition of vitamin D. Unfortunately, about third of the schizophrenia patients do not respond to antipsychotics and half of them will benefit from clozapine treatment. We intend to identify biological pathways of response and resistance to antipsychotic compounds, and especially to clozapine. We will employ various methods to analyze both human samples and animal models of schizophrenia.

We focus mainly on the neurobiology and the contribution of gene x environment interaction to the pathophysiology of severe mental disorders, including eating disorders, OCD, Tourette’s disorder, major depression, anxiety disorders, suicidal behavior and schizophrenia.

On the neurogenetic level, Dr. Elena Michaelovsky and Dr. Miri Carmel from FMRC assess the efficacy and tolerability of psychopharmacological agents in the treatment of pediatric and adult mental disorders, especially psychotic and mood disorders.

In a collaboration with Prof. Doron Gothelf from Sheba Medical Center and Dr. Elena Michaelovsky and Dr. Miri Carmel from FMRC, we identified genetic and epigenetic pathways that may be involved in the emergence of psychosis in patients with 22q11.2DS. In collaboration with Dr. Maya Amitai, we investigate the role of genetic variants in the response of depressed/anxious children and adolescents to antidepressants using a pharmacogenetic approach. In collaboration with Dr. Noa Ben Aroya, we attempt to identify biomarkers of tic disorders.

In our laboratory Dr. Elena Michaelovsky and Dr. Miri Carmel use a variety of molecular and bioinformatic approaches, including identification of de novo and hereditary mutations (CNVs, SNVs and ins/del), analyses of whole exome sequencing (WES), comparative genomic hybridization (CGH) array, epigenome-wide association study (EWAS), transcriptome screening, and cell cultures.

Publications (out of 150)

Monga S, Nagler R, Amara R, Weizman A, Gavish M. Inhibitory effects of the two novel TSPO ligands 2-Cl-MGV-1 and MGV-1 on LPS-induced microglial
Rabbit retinal section following intravitreal injection of ziv-aflibercept.
Credit: Prof. Anat Lowenstein
Positions, Prof. Adiel Barak
Head, Vitro-Retinal Surgery Unit, Tel Aviv Medical Center
Head, Research team
Department of Ophthalmology
Stem Cells Laboratory of Ophthalmology

Positions, Dr. Aya Barzelay, M.D., Ph.D.
Head, Research team
Department of Ophthalmology
Stem Cells Laboratory of Ophthalmology

Research

Development of novel stem cells therapy for retinal degeneration diseases using mesenchymal stem cells that are isolated from subcutaneous fat of patients. Development of minimally invasive methods to isolate stem cells from the patient. Growing stem cells at the laboratory and studying their ability to develop into retinal cells. Developing methods to transplant stem cells into mice retinas in mice models of retinal degeneration.

Main research topics

- To isolate and characterize human adipose tissue derived mesenchymal stem cells from patients.
- Developing minimally invasive methods for isolation and transplantation of stem cells to the patient
- Induce differentiation of ASCs into retinal cells. Designated for retinal transplantations of differentiated ASCs.
- Study the paracrine activity of ASCs in the hypoxic environment. Designated for retinal transplantations of activated ASCs.
- Evaluate the therapeutic potential of stem cells transplantations to retina in animal model of Retinal degeneration.

Team

Prof. Adiel Barak, M.D.
Dr. Aya Barzelay, M.D., Ph.D.

Publications

Research of ocular diseases pathogenesis and treatments

Positions
Prof. Irit Bahar, M.D.
Professor, School of Medicine
Prof. Tami Livnat, Ph.D.
Associate Professor, School of Medicine

Research team
Yael Nisgav, M.Sc.: Senior Researcher
Prof. Michal Kramer, M.D.: Head of Uveitis Service, Rabin Medical Center
Prof. Hadas Kalish, M.D.: Head of Neuro-Ophthalmology Service, Rabin Medical Center
Eitan Livny, M.D.: Head of Cornea Service. Rabin Medical Center

Alon Zahavi, M.D.: Attending Physician, Glaucoma Service, Rabin Medical Center
Seniors and residents of the Ophthalmology Department, Rabin Medical Center

Research
Our unique research group aims to study physiological and pathological processes in the eye, and to establish new approaches for treatment of ocular pathologies. We focus on ocular pathologies involving bleeding, impairment of blood retina barriers and growth of pathological blood vessels. The laboratory composes of a few study groups that focus on different compartments of the eye; e.g. retina, cornea, optic nerve etc.

Aiming to study choroidal neovascularization (CNV), we established a modification of the common method of CNV induction in animal models. Using an animal-based models, we are trying to expand our knowledge of CNV etiology and find a new therapeutic approach. We found a tight and reciprocal interactions between coagulation and inflammation. We have recently found that intraocular injection of coagulation inhibitor Activated Protein C (APC) significantly inhibited CNV formation and holds therapeutic potential.

We demonstrated for the first time the existence of NETosis in cytokine-induced ocular inflammation in a mouse model and human samples. Using chemical burn-induced neovascularization in a rat or rabbit
models we established an effective treatment for corneal neovascularization that warrants further study for potential use in humans. The neuro-ophthalmology section of our lab focuses on neuroimmunology, demyelinating disease progression, and basic research using murine model of experimental encephalomyelitis.

We are studying the involvement of the innate immune system and inflammatory cytokine in the modulation of acute and chronic uveitis. Currently we are establishing the model of Experimental Autoimmune Uveitis in mice (EAU), and research new therapeutic modalities in this model.

Publications

Investigating Age-Related Macular Edema and Diabetic Retinopathy

Positions
Professor of Ophthalmology, Faculty of Medicine
Assistant Dean, Faculty of Medicine
Head, Department of Ophthalmology
Incumbent, Sydney A. Fox Chair in Ophthalmology
President, Israeli Ophthalmological Society
Associate editor, International Journal of Retina and Vitreous
Editor in Chief, Case Reports in Ophthalmology
Chairperson, National Ethics Review Board Committee, State of Israel Ministry of Health
Board member, Israeli Council of Surgery and Anesthesia
Chair, Academia Ophthalmologica Internationalis
General Secretary of the Board, Euretina Society
International Committee Member, Macula Society

Research

Publications

Retinal imaging (Optical coherence tomography- OCT and Fluorescein angiography- FA) of a very early neovascular macular degeneration lesion detected by the preferential hyperacuity perimetry technology developed for early detection of macular degeneration.

Reviews

Neurodegeneration in the Eye

Prof. Ygal Rotenstreich, M.D.
Goldschleger Eye Institute
Sheba Medical Center
Faculty of Medicine

Dr. Ifat Sher, Ph.D.
Lab Manager & Senior Researcher

Positions
Director, Electrophysiology Unit and Retinal Research Laboratory, Goldschleger Eye Institute, Sheba Medical Center, Tel Hashomer
Associate Professor, Faculty of Medicine, Tel Aviv University
Member, Sagol School of Neuroscience, Tel Aviv University

Chair, Association for Research in Vision & Ophthalmology (ARVO) Ethics and Regulations in Human Research Committee
Founder and Medical Director, Epitech-Mag Inc. Ltd. Israel
Founder and Medical Director, EVERADS Inc. Ltd. Israel
Medical Advisor, Accutome, Halma Inc. USA
Member, Sheba Medical Center Patent Committee

Immunofluorescence analysis (A), histopathology analysis (B) and MRI (C) for monitoring stem cell therapeutic effects in animal models. Multicolor OCT imaging (D) and chromatic multifocal pupilloperimetry (E) for objective structure & function clinical assessment. Nanotherapy for stem cell modulation (F).
Research

We lead basic science, translational medicine and clinical studies in an attempt to solve the unmet needs in neurodegenerative diseases in the eye and brain.

Current research projects include:

• Development of innovative anterior and posterior segment imaging and AI analysis

• Chromatic pupilloperimetry for diagnosis and patient monitoring

• Novel surgical and pharmacological interventions for myopia, dry-eye, cataract and retinal degeneration.

• The eye as a window to the brain – using retinal structure and function measurements as novel early and objective biomarkers for brain neurodegeneration diseases (e.g. Alzheimer’s disease, multiple sclerosis, Parkinson’s Disease), brain injuries and brain tumors.

• Personalized medicine in retinitis Pigmentosa using iPSC-derived retinal cultures

• Development of novel treatments and drug delivery platforms for neuroretinal degeneration using human and rodent retinal cultures, small and large animal models and cutting-edge molecular biology techniques.

Publications

Public Health
Prof. Gabriel Chodick, Ph.D., MHA
Epidemiology & Preventive Medicine
School of Public Health

Positions
Head, Epidemiology & Database Analysis Department, Maccabi Institute for Research & Innovation, Maccabi Healthcare Services
Associate Professor, Epidemiology & Preventive Medicine Division, School of Public Health, Tel Aviv University
Adjunct Investigator, Radiation Epidemiology Branch, Division of Epidemiology and Genetics, National Institute of Cancer, National Institutes of Health, Bethesda (MD), USA
Head, Academic Department of Public Health, Medical Division. Maccabi Healthcare Services

Research
Our primary research interests focuses on the use of Maccabi’s large database to examine multiple dimensions of health care quality, including safety (e.g. adverse effects of IVF, renal effects of chronic medications), efficacy and effectiveness of healthcare technologies (e.g. glycemic control and outcomes in patients treated with new generation therapies for diabetes), medical and economic burden of chronic diseases and health events (e.g. congestive heart failure, hepatitis C infections) as well as pharmacoepidemiology studies such as medication adherence studies (e.g. tamoxifen in breast cancer patients) and pleiotropic effects (e.g. statins). Our other interests include health effects of low dose ionizing radiation and specifically cancer and cataract.

Publications
Rabinowich L, Steinvil A, Leshem-Rubino E, Berliner S, Zeltser D, Rogowski O, Shalev V, Raz R, Chodick G. Adherence to Statins is associated with reduced incidence of idiopathic venous thromboembolism: real-life data from a large healthcare maintenance organization 8:1817-1821

Biological Monitoring Using Micro and Nano-Sized Particles Distribution Measurement in Biological Samples to Early Detect Health Impairment in Environmental and Occupational Lung Settings

Positions
Head, Laboratory Pulmonary and Allergic Diseases
Chair Department of Environmental and Occupational Health, Tel Aviv University

Research
The “ultrafine hypothesis” suggests that smaller particles are more potent than larger particles at driving inflammation; leading to the initial proposal that respiratory ill health was associated with the number of ambient ultrafine particles. When first introduced in 1994, the “ultrafine hypothesis” met friendly skepticism, with opponents arguing that NSP (nano-sized particles) are very short-lived and disappear through heterogeneous and homogeneous aggregation within seconds or minutes and therefore are toxicologically irrelevant. This skeptical attitude has changed considerably. Research teams across the world are now working now on NSP, and there are multidisciplinary alliances among atmospheric scientists, epidemiologists, clinicians, and toxicologists, among others. Nonetheless, substantial research gaps continue to prevail. Most of the initial assessments of particulate burden and involvement
of inflammatory and structural cells in occupational lung diseases were made in studies using fibreoptic bronchoscopy in conjunction with bronchoalveolar lavage (BAL). The relative invasiveness of this technique, however, has restricted the use of bronchoscopy to a limited number of specialised centres, and hampered its development into a practical and suitable tool for screening programmes, exposure evaluation or repeated follow-up of workers exposed to hazardous dust in large populations.

The ongoing search for non-invasive techniques has led to a number of development approaches, such as the examination of cells, quantification of biochemical mediators, and characterization of particulate matter in samples of induced sputum (IS) as well as the quantification of biochemical mediators and characterization of particulate matter in the condensation of exhaled breath condensate (EBC).

In the last years, we have concentrated our research on the application of these techniques in occupational and environmental exposures:

- **Particle size distribution (PSD) and dynamic shape characterization (DSC):** The size and shape of the particles will be assessed from the rich cell fraction of the processed plugs with the Eyetech Analyzer and the analyzer's video channel (Donner Technologies, Israel) using a PSD method in the range of 0.5-3,600 based on the time of transition theory where the duration of interaction between beam and particle provides a direct measurement of each particle's size (Fig 1).

- **NSP measurement.** The size and shape of the ultrafine particles (PM_{0.1}) are assessed from the rich cell fraction of the processed plugs in the IS sample and the EBC sample, with the NanoSight LM20 using the Nanoparticle Tracking Analysis (NTA) method of visualizing and analyzing particles in liquids that relates the rate of Brownian motion to particle size. The rate of movement is related only to the viscosity of the liquid, the temperature and the size of the particle and is not influenced by particle density or refractive index (Fig 2).

We studied several populations: Workers exposed to hazardous dust at the Israel World Trade Center (WTC), dust-exposed firefighters in the USA ten months after the WTC disaster, dental technicians exposed to beryllium (funded by the Binational Science Foundation BSF 2007-2011), workers exposed to artificial stone dust and asthmatic children in the Tel Aviv area. Our ongoing research is on the field that characterize the mineral compositions of these particles and their biological effect.

Publications

Using Medical Databases for Personalized Medicine

Positions
Head, Maccabi Institute for Research & Innovation, Maccabi Healthcare Services
Associate Professor, Epidemiology & Preventive Medicine Division, School of Public Health, Tel Aviv University
Independent family practice partnership clinic, Rosh Haayin

Research
The emergence of precision medicine technologies has allowed medical scientists to address complex questions which necessitate very large datasets and patients’ numbers. Unlike traditional methods such as randomized trials, the richness of very large sets of data enables more rapid advance toward personalized medicine. At the Maccabi Institute for Research & Innovation, we utilize large real-world databases to investigate clinical issues for better provision of care and improved outcomes. In addition to traditional and pragmatical clinical trials, we conduct multiple observational analysis using advanced data platform to enable data science studies based on Maccabi’s database of 2.5M members’ medical files. One example for personalized medicine is our newly developed method for identifying individuals at increased risk of harboring colorectal cancer by analyzing their complete blood counts records. We have developed a computational model using a large derivation dataset of over 450,000 Israeli individuals and validated it on 2 separate and independent datasets of primary care patients, consisting of over 139,000 Israeli and over 25,500 UK individuals. Our approach applies novel methods both in feature generation (where we use a set of linear models to handle sparse and irregular measurements along time) and in model construction (where we combined 2 tree-based models – RF and Gradient Boosting). We showed that our approach can detect 50% of CRC cases 3–6 months before diagnosis at 88% specificity in the Israeli dataset and 94% specificity in the UK dataset. The system is already successfully implemented in routine practice at Maccabi.

Publications
Goldstein D, Chodick G, Shalev V, Thorsted BL, Elliott L, Karasik A. Use of Healthcare Services Following Severe Hypoglycemia in Patients with Diabetes: Analysis of Real-World Data. Diabetes Therapy
Mouse oocyte (Fyn – green), Actin – red). Credit: Mattan Levi, Ruth Shalgi
Fertility Research Laboratory

Prof. Ronit Abir Position
Associate Professor

Dr. Yoel Shufaro Position
Senior Lecturer, Faculty of Medicine, Tel Aviv University
Head of Fertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center & Felsenstein Research Medical Center, Rabin Medical Center

Research
Our research laboratory focuses on fertility preservation for young female cancer patients. Anti-cancer therapy (mainly chemotherapy) reduces and damages human ovarian follicles, in particular the ovarian reserve, primordial follicles. In turn, chemotherapy reduces fertility and causes premature ovarian insufficiency. Therefore, in various medical center including our own, ovarian tissue from young cancer patients (mostly young girls) is frozen preferably before onset of chemotherapy for future fertility restoration by auto-transplantation of frozen-thawed ovarian tissue. Our team focuses mainly on two research topics: In vitro maturation of ovarian primordial follicles which are the ovarian reserve and methods to improve transplantation of human ovarian tissue for fertility restoration. Although over 200 livebirths were achieved by auto-transplantation of ovarian tissue, there is a risk of reseeding some of the malignancies with the ovarian implants. Therefore, we are trying to develop a successful culture system to develop mature oocytes from small primordial follicles. These mature oocytes will eventually be fertilized in standard in vitro fertilization laboratories. Cancerous cells exist in the ovarian stroma cells and not in the germ cells, so the danger of re-introducing cancer will not exist. This system will include an optimal culture matrix and a complex culture medium which will probably include many growth factors. Another problem with ovarian implants is that many of the follicles within the tissue deteriorate immediately after transplantation & methods to hasten vascularization and decrease apoptosis and atresia are needed. For this part of our study, we utilize immunodeficient mice that do not reject transplants. So far, we used host and graft treatments with substances as hyaluronic acid-based biological glue, Vitamin E, pure plant based recombinant human collagen, small intestine submucosa, simvastatin & fibrin clots. Some promising results were obtained, but follicle survival after transplantation should be improved.

Selected publications

Folliculogenesis and Ovulation in the Human Ovary – Fertility Treatments and Control

Positions
Associate Professor, Obstetrics and Gynecology, Faculty of Medicine
Senior Physician, IVF Unit
Director Reproduction Laboratory, Sheba Medical Center
Lab Director
Dr. Yuval Yung, Ph.D.
Email: yuval.yung@sheba.health.gov.il

Research
Our laboratory’s aim is the molecular characterization of the ovulatory cascade in the human ovary. We undertook to systematically identify novel ovulation-associated genes. Differentially expressed candidate genes (n = 1746) were identified by comparing the transcriptome of cumulus granulosa cells from compact pre-ovulatory germinal vesicle (GV) cumulus-oocyte complexes with those of expanded post-ovulatory Metaphase II COCs. We assumed that differentially expressed genes likely serve as regulators of ovulation, cumulus expansion, and/or oocyte maturation. To complete the identification of factors involved in the ovulatory process, we generated a library of global miRNAs involved in this process, and by bioinformatics tools link the ovulatory miRNA library with the mRNA library. The bioinformatics analysis enables us to identify new regulatory mechanisms responsible for the oocyte maturation process and ovulation.

The resulting database provides unprecedented insight into the processes and pathways involved in follicular maturation and ovulation. This effort led us to identify and characterize several new genes involved in the human ovulatory process such as sFRP4, ADAMTS-1, Decorin and Lumican. Recently, prompted by the observation that prostaglandin transporter (PGT) constitutes a highly expressed peri-ovulatory transcript, we set out to investigate the physiological role of this key transporter protein in the ovulatory process. We were able to show that PGT is an indispensable mediator of ovulation, the inhibitors of which may constitute potential novel candidates for non-hormonal contraception (Science Translational Medicine, 2016).

These studies will contribute significantly to the understanding of the complex process of ovulation in
human which is central to the reproductive processes. The implications of improved understanding of this process may contribute to further development of strategies for in vitro maturation of oocytes and follicles, improve IVF success rates especially in difficult clinical conditions. Genes that their expression levels correlate with oocytes clinical outcome can be future markers for oocyte quality and selection. Elucidating new human ovulatory genes may contribute to our understanding of infertility conditions such as anovulation, and development of novel strategies for fertility control.

Publications

Fertility Preservation Research and Clinical Center

Positions
Fertility Preservation Center, Reproduction IVF, Division of Obstetrics and Gynecology, Sheba Medical Center and Tel Aviv University.
President, International Society for Fertility Preservation (ISFP) http://www.isfp-fertility.org/

Research
Our research center is specialized in fertility preservation. We have a fully equipped basic research laboratory, together with a large clinical database with a significant number of incoming patients. This makes our research center unique for high quality basic research with clinical relevancy. Our research focuses on:

- Ovarian follicle research and the biological clock.
- Cryopreservation / transplantation of ovarian tissue and IVF.
- The effects of toxic agents and chemotherapy on reproduction and gametes.
- Modalities and agents that protect the gametes and prevent toxic damage.
- Genetic injury to the gametes.
- Methods to detect cancer cells in tissue.
- Endometrial receptivity.
- Interpreting cancer patients' information regarding endocrine, reproductive and psychological effects.

Publications

An artist’s view of how single-cell clones represented by a specific color emerge during kidney development, maintenance, and regeneration. Credit: Dekel Lab, Pediatric Stem Cell Research Institute, Sheba Medical Center.
From Developmental Biology to Normal and Cancer Stem Cells to Novel Therapeutics

Prof. Benjamin Dekel, M.D., Ph.D.
Division of Pediatric Nephrology, Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center
Faculty of Medicine

Positions
Head, Pediatric Stem Cell Research Institute, Sheba Medical Center
Director, Division of Pediatric Nephrology, Sheba Medical Center
Associate Professor, Dept. of Pediatrics, Faculty of Medicine
Adjunct Faculty, Dept. of Human Molecular Genetics & Biochemistry, Faculty of Medicine
Member, American Society of Clinical Investigation
President, Israel Stem Cell Society

Research
Our laboratory takes a multi-disciplinary approach including genetics, genomics, molecular biology, biochemistry, and the development of preclinical human-mouse models to cast light on fundamental problems of kidney developmental biology, tissue regeneration, and cancer; while, at the same time, holding promise for novel disease therapies. Our central hypothesis is that normal and transformed tissue stem cells drive these processes and therefore we aim to discover such cells and study their molecular mechanisms. In the field of human kidney development and pediatric renal cancer (Wilms tumor), we have pioneered the identification and isolation of normal and malignant renal stem/progenitor cells and have shown how these novel cell types are of relevance to human disease; on one hand utilization of the normal stem cells in tissue repair and regeneration and on the other hand development of targeted therapy against cancer stem cells and tumor eradication. These bench discoveries have been fundamental to translation to bedside; our approach for tumor stem cell eradication has already sparked a multicenter clinical trial for the treatment of patients with relapsing Wilms’ tumors.

Publications

The cover illustration shows how single-cell clones emerge during development, maintenance, and repair to generate a multicolored kidney. Dekel and colleagues report that continued growth of the mammalian kidney in adulthood is performed by lineage-restricted clonal progeny that continuously add new epithelial cells to each segment of the kidney and are responsive to Wnt signaling. Lineage-restricted progenitors are also observed in development after renal epithelial induction and during acute renal injury. Rainbow mice, which express one of four alternative fluorescent reporters in each cell, allow genetic lineage tracing of individual clones.

Reviews and chapters

Laboratory for the Research of Skin Disease

Positions
Senior Lecturer, Faculty of Medicine
Director, Pediatric Dermatology Service, Lili & Edmond Safra Children’s Hospital, Sheba Medical Center
Lab Manager: Dr. Gil Leichner Ph.D.

Research
We study skin diseases with a focus on angiogenesis and lymphangiogenesis. Deficiency in development or function of the vascular or lymphatic vasculature causes various anomalies in humans, and active angiogenesis and lymphangiogenesis play a significant role in tumor metastasis. The presence of vascular anomalies can cause emotional and social problems. Moreover, some malformations are painful or even life-endangering. Current treatments for these diseases do not achieve optimal results. The goal of my research is to isolate and characterize the endothelial cells, the major cellular component of the vascular malformations in order to develop targeted therapy for these lesions. We apply cutting-edge technologies including molecular biology, and microarray analysis to characterize the molecular paths that regulate the endothelium development. Other areas studied in the lab are editing in psoriasis and Cutaneous graft versus host disease.

Isolation and characterization of endothelial cells from lymphatic malformations. FACS (A) and immunofluorescence analyses shows pure lymphatic endothelium phenotype with reduced expression of the differentiation marker CD31.
Publications

Gabrielli S, Le M, Netchiporouk E, Miedzybrodzki B, Baum S, Greenberger S, Staubach-Renz P, Ben-Shoshan M. Chronic urticaria in children can be controlled effectively with updosing second-

hESCs in Development, Genetic Disorders and Cell Therapy

Positions
Dalit Ben Yosef
Director, IVF Lab and Wolfe PGD-Stem Cell Lab, Tel Aviv Sourasky Medical Center
Professor, Department of Cell and Developmental Biology, Faculty of Medicine

Research
The Wolfe PGD-Stem Cell Lab focuses on studying issues related to early embryonic and developmental processes, genetic disorders and different aspects of cell therapy using our unique collection of PGD-derived human embryonic stem cells (hESCs).

We derive hESCs directly from affected embryos, which are obtained as a by-product of the preimplantation genetic diagnosis (PGD) procedure. PGD is performed for couples at high risk of transmitting a genetic defect and who wish to ensure the birth of a healthy child. It requires in vitro fertilization (IVF), which makes the pre-implantation embryos available for biopsy and single-cell molecular analysis. Following IVF-PGD, embryos diagnosed as being disease-free are transferred into the uterus for implantation, whereas the affected embryos that would be otherwise discarded are used to establish hESC lines that carry the naturally inherited mutations. This setup provides the benefit of efficient coordination between the generously donated affected embryos and the stem cell lab that focuses on researching these very unique samples. By means of these capabilities, we have already established >50 mutant hESC lines associated with 18 different inherited disorders. These lines make it possible for us to study the molecular and pathophysiological mechanisms underlying the genetic disease of which they were diagnosed. In addition, since we have a large collection of hESC lines derived under the same conditions, we are able to perform different studies on the pluripotent, genetic and epigenetic properties of these cells.

Publications
Shpiz, A., Ben-Yosef, D., and Kalma, Y. (2016). Impaired function of trophoblast cells derived from translocated hESCs may explain pregnancy loss in
women with balanced translocation (11;22). J Assist Reprod Genet 33, 1493-1499.

Grants

2020-2023 Israel Science Foundation
2020-2025 Sagol Fund for Embryos and Stem Cells, The Sagol Network
2021-2026 NIH Grant (RO1)
Deciphering Basic Kidney Biology to Improve the Lives of Those Affected by Kidney Disease

Research
Kidney research is both intriguing and important. On the one hand, the kidney is highly complex and only partially understood. On the other hand, kidney diseases are very common, resulting in much morbidity and mortality. These include chronic kidney disease (CKD), which affects 15% of the population.

Kidney organoids. (A) Phase-contrast microscopy showing large, convoluted organoids. (B) Staining for the apical marker F-Actin and Ki67, showing formation of convoluted tubular structures with a small subset of cells actively proliferating. (C) Staining for the epithelial marker EpCAM and renal progenitor marker PAX2, showing small clusters of PAX2+EpCAM cells (arrow) and multiple EpCAM+ tubules, some of which express PAX2, indicating an undifferentiated phenotype while some lack PAX2 expression and hence more mature (asterisk). Note nuclear PAX2 localization. (D) Left: the organoids harbor both LTL+ proximal (arrow) and EMA+ (arrowhead) distal tubules. Right: magnification of marked area. Note double positive tubules, indicating primitive phenotype prior to segment specification. (E) The organoids contain a cells population with nuclear expression of the CM marker SIX2, many of which are actively proliferating, as shown by Ki67 expression. This population lies adjacent to tubular structures. (F) The organoids harbor both PAX2+GATA3+ cells, indicative of a UB-lineage and PAX2+GATA3- cells of the CM lineage. Scale bars: A: 100µM; B&E: 20µM; C&F:50µM; D: left: 50µM, right: 20 µM.
and is cureless, and renal cell carcinoma (RCC), the most common renal cancer, which kills ~175,000 people a year worldwide.

Our main goal is to uncover new aspects in the basic biology of the kidney and new molecular mechanisms underlying kidney disease. However, we also focus on translational aspects and work hard to leverage our discoveries into new diagnostic, prognostic and therapeutic approaches. As a hospital-based lab, with a team that also includes physicians, we have the unique advantage of having all the expertise needed to truly implement a bench-to-bedside and backwards approach. To achieve these goals, we use a wide range of methodologies and research areas, including stem cell biology, large-scale ‘omics’ analyses (mainly at the transcriptional and epigenetic levels), 3D culture methods and animal models.

Publications

Grants

2021-2024 Sheba Medical Center Physician-Researcher Excellence Program
2020-2021 Suzanne Eichinger-Henke Grant (Faculty of Medicine, TAU)
2021-2023 Israel Cancer Association
2021-2024 Estates Committee, Ministry of Justice
Optimazing Graft Survival in Patients after Kidney Transplantation

Positions
Clinical Senior Lecturer, Faculty of Medicine
Department Head – Department of Nephrology and Hypertension, Rabin Medical Center

Research
Kidney transplantation is the treatment of choice for patients with end stage kidney disease (ESKD). However long-term survival of kidney allograft is suboptimal with only minimal improvement during the last years. In our research we try to find the optimal immunosuppression that will minimize immunological insult to the kidney allograft as well as the risk of infection malignancy and cardiovascular disease. We focus on the blood level of tacrolimus, the potent component of the immunosuppressant regimen. We use statistical and mathematical tools to optimize the treatment for each patient in order to get maximal graft survival with minimal complications. We also try to evaluate the risk factors for post-transplant complication in order to impliments appropriate preventive measures to minimize the risk. Our study aims are to find clinical and molecular characteristics the will able us to implement personalized Madison for each patient with maximal graft survival and minimal complications rate.

Publications
Green H, Lichtenberg S, Rahamimov R, Livneh A, Chagnac A, Mor E, Rozen-Zvi B. Familial Mediterranean fever is associated with increased mortality after kidney transplantation – A 19

